用 Span 对 C# 进程中三大内存区域进行统一访问 ,太厉害了!

  • A+
所属分类:.NET技术
摘要

前段时间写了几篇 C# 漫文,评论留言中有很多朋友多次提到 Span,周末抽空看了下,确实是一个非常??的新结构,让我想到了当年的WCF,它统一了.NET下各种零散的分布式技术,包括:.NET Remoteing,WebService,NamedPipe,MSMQ,而这里的 Span 统一了 C# 进程中的三大块内存访问,包括:栈内存, 托管堆内存, 非托管堆内存,画个图如下:


一:背景

1. 讲故事

前段时间写了几篇 C# 漫文,评论留言中有很多朋友多次提到 Span,周末抽空看了下,确实是一个非常??的新结构,让我想到了当年的WCF,它统一了.NET下各种零散的分布式技术,包括:.NET Remoteing,WebService,NamedPipe,MSMQ,而这里的 Span 统一了 C# 进程中的三大块内存访问,包括:栈内存, 托管堆内存, 非托管堆内存,画个图如下:

用 Span 对 C# 进程中三大内存区域进行统一访问 ,太厉害了!

接下来就和大家具体聊聊这三大块的内存统一访问。

二: 进程中的三大块内存解析

1. 栈内存

大家应该知道方法内的局部变量是存放在栈上的,而且每一个线程默认会被分配 1M 的内存空间,我举个例子:

         static void Main(string[] args)         {             int i = 10;             long j = 20;             List<string> list = new List<string>();         }  

上面 i,j 的值都是存于栈上,list的堆上内存地址也是存于栈上,为了看个究竟,可以用 windbg 验证一下:

 0:000> !clrstack -l OS Thread Id: 0x2708 (0)         Child SP               IP Call Site 00000072E47CE558 00007ff89cf7c184 [InlinedCallFrame: 00000072e47ce558] Interop+Kernel32.ReadFile(IntPtr, Byte*, Int32, Int32 ByRef, IntPtr) 00000072E47CE558 00007ff7c7c03fd8 [InlinedCallFrame: 00000072e47ce558] Interop+Kernel32.ReadFile(IntPtr, Byte*, Int32, Int32 ByRef, IntPtr) 00000072E47CE520 00007FF7C7C03FD8 ILStubClass.IL_STUB_PInvoke(IntPtr, Byte*, Int32, Int32 ByRef, IntPtr) 00000072E47CE7B0 00007FF8541E530D System.Console.ReadLine() 00000072E47CE7E0 00007FF7C7C0101E DataStruct.Program.Main(System.String[]) [E:net5ConsoleApp2ConsoleApp1Program.cs @ 22]     LOCALS:         0x00000072E47CE82C = 0x000000000000000a         0x00000072E47CE820 = 0x0000000000000014         0x00000072E47CE818 = 0x0000018015aeab10  

通过 clrstack -l 查看线程栈,最后三行可以明显的看到 0a -> 10, 14 -> 20 , 0xxxxxxb10 => list堆地址,除了这些简单类型,还可以在栈上分配复杂类型,这里就要用到 stackalloc 关键词, 如下代码:

  int* ptr = stackalloc int[3] { 10, 11, 12 };  

问题就在这里,指针类型虽然灵活,但是做任何事情都比较繁琐,比如说:

  • 查找某一个数是否在 int[] 中
  • 反转 int[]
  • 剔除尾部的某一个数字(比如 12)

就拿第一个问题来说,操作指针的代码如下:

             //指针接收             int* ptr = stackalloc int[3] { 10, 11, 12 };              //包含判断             for (int i = 0; i < 3; i++)             {                 if (*ptr++ == 11)                 {                     Console.WriteLine(" 11 存在 数组中");                 }             }  

用 Span 对 C# 进程中三大内存区域进行统一访问 ,太厉害了!

后面的两个问题就更加复杂了,既然 Span 是统一访问,就应该用 Span 来接 stackalloc,代码如下:

             Span<int> span = stackalloc int[3] { 10, 11, 12 };              //1. 是否包含             var hasNum = span.Contains(11);              //2. 反转             span.Reverse();              //3. 剔除尾部             span.Trim(12);  

这就很??了,你既不需要接触指针,又能完成指针的大部分操作,而且还特别便捷,佩服,最后来验证一下 int[] 是否真的在 线程栈 上。

 0:000> !clrstack -l 000000ED7737E4B0 00007FF7C4EA16AD DataStruct.Program.Main(System.String[]) [E:net5ConsoleApp2ConsoleApp1Program.cs @ 28]     LOCALS:         0x000000ED7737E570 = 0x000000ed7737e4d0         0x000000ED7737E56C = 0x0000000000000001         0x000000ED7737E558 = 0x000000ed7737e4d0  0:000> dp 0x000000ed7737e4d0 000000ed`7737e4d0  0000000b`0000000c 00000000`0000000a  

从 Locals 处的 0x000000ED7737E570 = 0x000000ed7737e4d0 可以看到 key / value 是非常相近的,说明在栈上无疑。

从最后一行 a,b,c 可看出对应的就是数组中的 10,11,12。

2. 非托管堆内存

说到非托管内存,让我想起了当年 C# 调用 C++ 的场景,代码到处充斥着类似下面的语句:

         private bool SendMessage(int messageType, string ip, string port, int length, byte[] messageBytes)         {             bool result = false;             if (windowHandle != 0)             {                 var bytes = new byte[Const.MaxLengthOfBuffer];                 Array.Copy(messageBytes, bytes, messageBytes.Length);                  int sizeOfType = Marshal.SizeOf(typeof(StClientData));                  StClientData stData = new StClientData                 {                     Ip = GlobalConvert.IpAddressToUInt32(IPAddress.Parse(ip)),                     Port = Convert.ToInt16(port),                     Length = Convert.ToUInt32(length),                     Buffer = bytes                 };                   int sizeOfStData = Marshal.SizeOf(stData);                  IntPtr pointer = Marshal.AllocHGlobal(sizeOfStData);                  Marshal.StructureToPtr(stData, pointer, true);                  CopyData copyData = new CopyData                 {                     DwData = (IntPtr)messageType,                     CbData = Marshal.SizeOf(sizeOfType),                     LpData = pointer                 };                  SendMessage(windowHandle, WmCopydata, 0, ref copyData);                  Marshal.FreeHGlobal(pointer);                  string data = GlobalConvert.ByteArrayToHexString(messageBytes);                 CommunicationManager.Instance.SendDebugInfo(new DataSendEventArgs() { Data = data });                  result = true;             }             return result;         }  

上面代码中的: IntPtr pointer = Marshal.AllocHGlobal(sizeOfStData);Marshal.FreeHGlobal(pointer) 就用到了非托管内存,从现在开始你就可以用 Span 来接 Marshal.AllocHGlobal 分配的非托管内存啦!??‍?,如下代码所示:

     class Program     {         static unsafe void Main(string[] args)         {             var ptr = Marshal.AllocHGlobal(3);              //将 ptr 转换为 span             var span = new Span<byte>((byte*)ptr, 3) { [0] = 10, [1] = 11, [2] = 12 };              //然后在  span 中可以进行各种操作了。。。              Marshal.FreeHGlobal(ptr);         }     }  

这里我也用 windbg 给大家看一下 未托管内存 在内存中是个什么样子。

 0:000> !clrstack -l OS Thread Id: 0x3b10 (0)         Child SP               IP Call Site 000000A51777E758 00007ff89cf7c184 [InlinedCallFrame: 000000a51777e758] Interop+Kernel32.ReadFile(IntPtr, Byte*, Int32, Int32 ByRef, IntPtr) 000000A51777E758 00007ff7c4654dd8 [InlinedCallFrame: 000000a51777e758] Interop+Kernel32.ReadFile(IntPtr, Byte*, Int32, Int32 ByRef, IntPtr) 000000A51777E720 00007FF7C4654DD8 ILStubClass.IL_STUB_PInvoke(IntPtr, Byte*, Int32, Int32 ByRef, IntPtr) 000000A51777E9E0 00007FF7C46511D0 DataStruct.Program.Main(System.String[]) [E:net5ConsoleApp2ConsoleApp1Program.cs @ 26]     LOCALS:         0x000000A51777EA58 = 0x0000027490144760         0x000000A51777EA48 = 0x0000027490144760         0x000000A51777EA38 = 0x0000027490144760  0:000> dp 0x0000027490144760 00000274`90144760  abababab`ab0c0b0a abababab`abababab          

最后一行的 0c0b0a 这就是低位到高位的 10,11,12 三个数,接下来从 Locals 处 0x000000A51777EA58 = 0x0000027490144760 可以看出,这个key,value 相隔十万八千里,说明肯定不在栈内存中,继续用 windbg 鉴别一下 0x0000027490144760 是否是托管堆上,可以用 !eeheap -gc 查看托管堆地址范围,如下代码:

 0:000> !eeheap -gc Number of GC Heaps: 1 generation 0 starts at 0x00000274901B1030 generation 1 starts at 0x00000274901B1018 generation 2 starts at 0x00000274901B1000 ephemeral segment allocation context: none          segment             begin         allocated              size 00000274901B0000  00000274901B1000  00000274901C5370  0x14370(82800) Large object heap starts at 0x00000274A01B1000          segment             begin         allocated              size 00000274A01B0000  00000274A01B1000  00000274A01B5480  0x4480(17536) Total Size:              Size: 0x187f0 (100336) bytes. ------------------------------ GC Heap Size:    Size: 0x187f0 (100336) bytes.   

从上面信息可以看到,0x0000027490144760 明显不在:3代堆:00000274901B1000 ~ 00000274901C5370 和 大对象堆:00000274A01B1000 ~ 00000274A01B5480 区间范围内。

3. 托管堆内存

用 Span 统一托管内存访问那是相当简单了,如下代码所示:

    Span<byte> span = new byte[3] { 10, 11, 12 };  

同样,你有了Span,你就可以使用 Span 自带的各种方法,这里就不多介绍了,大家有兴趣可以实操一下。

三: 总结

总的来说,这一篇主要是从思想上带大家一起认识 Span,以及如何用 Span 对接 三大区域内存,关于 Span 的好处以及源码解析,后面上专门的文章吧!

更多高质量干货:参见我的 GitHub: dotnetfly

用 Span 对 C# 进程中三大内存区域进行统一访问 ,太厉害了!