- A+
作者:
一、背景
从.NET Core 1.0(或 .NET Framework 4.5、.NET Standard 1.0)开始,.NET中便可以使用具有SIMD硬件加速的向量类型了。
其中大小与硬件相关的向量(Vectors with a hardware dependent size)作用最大。它由 只读结构体(readonly struct) Vector<T>
,及辅助的静态类 Vector 所组成。
只读结构体 Vector<T>
主要是通过运算符提供了常规算术运算的能力,功能有限。而静态类 Vector 为向量类型提供了大量的运算函数,能大大拓展了向量类型的使用领域。
但是静态类 Vector 提供了大量的方法,数量达到一百多个,且文档说明很简略,导致学习起来很困难。
于是我编写了一个Demo程序,将静态类 Vector所提供百多个向量方法,每一个均编写了测试代码。利用 测试代码、运行结果 与官方文档进行对照,这样便更容易弄懂了。
二、编写Demo程序(VectorClassDemo)
2.1 项目结构
目前解决方案里有这3个项目:
- VectorClassDemo:共享项目。里面是公用的测试代码。
- VectorClassDemo20:.NET Core 2.0 控制台项目。用于测试低版本 .NET Core 2.0 时的运行情况。
- VectorClassDemo50:Net 5.0 控制台项目。用于测试高版本 .NET 时的运行情况。例如可临时将项目的目标框架修改为“.Net 7.0”,测试 “.Net 7.0”下的表现。
为了便于不同目标框架的测试,于是将公用的测试代码放在共享项目里,这样能便于代码复用,使控制台的代码简单。例如 VectorClassDemo50 中 Program.cs 代码为:
using System; using System.IO; using VectorClassDemo; namespace VectorClassDemo50 { class Program { static void Main(string[] args) { string indent = ""; TextWriter tw = Console.Out; tw.WriteLine("VectorClassDemo50"); tw.WriteLine(); VectorDemo.OutputEnvironment(tw, indent); tw.WriteLine(); VectorDemo.Run(tw, indent); } } }
2.2 输出环境信息(OutputEnvironment)
因为这次测试了多个平台,不同平台的环境信息信息均不同。于是可以专门用一个函数来输出环境信息,源码如下。
/// <summary> /// Is release make. /// </summary> public static readonly bool IsRelease = #if DEBUG false #else true #endif ; /// <summary> /// Output Environment. /// </summary> /// <param name="tw">Output <see cref="TextWriter"/>.</param> /// <param name="indent">The indent.</param> public static void OutputEnvironment(TextWriter tw, string indent) { if (null == tw) return; if (null == indent) indent = ""; //string indentNext = indent + "t"; tw.WriteLine(indent + string.Format("IsRelease:t{0}", IsRelease)); tw.WriteLine(indent + string.Format("EnvironmentVariable(PROCESSOR_IDENTIFIER):t{0}", Environment.GetEnvironmentVariable("PROCESSOR_IDENTIFIER"))); tw.WriteLine(indent + string.Format("Environment.ProcessorCount:t{0}", Environment.ProcessorCount)); tw.WriteLine(indent + string.Format("Environment.Is64BitOperatingSystem:t{0}", Environment.Is64BitOperatingSystem)); tw.WriteLine(indent + string.Format("Environment.Is64BitProcess:t{0}", Environment.Is64BitProcess)); tw.WriteLine(indent + string.Format("Environment.OSVersion:t{0}", Environment.OSVersion)); tw.WriteLine(indent + string.Format("Environment.Version:t{0}", Environment.Version)); //tw.WriteLine(indent + string.Format("RuntimeEnvironment.GetSystemVersion:t{0}", System.Runtime.InteropServices.RuntimeEnvironment.GetSystemVersion())); // Same Environment.Version tw.WriteLine(indent + string.Format("RuntimeEnvironment.GetRuntimeDirectory:t{0}", System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory())); #if (NET47 || NET462 || NET461 || NET46 || NET452 || NET451 || NET45 || NET40 || NET35 || NET20) || (NETSTANDARD1_0) #else tw.WriteLine(indent + string.Format("RuntimeInformation.FrameworkDescription:t{0}", System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription)); #endif tw.WriteLine(indent + string.Format("BitConverter.IsLittleEndian:t{0}", BitConverter.IsLittleEndian)); tw.WriteLine(indent + string.Format("IntPtr.Size:t{0}", IntPtr.Size)); tw.WriteLine(indent + string.Format("Vector.IsHardwareAccelerated:t{0}", Vector.IsHardwareAccelerated)); tw.WriteLine(indent + string.Format("Vector<byte>.Count:t{0}t# {1}bit", Vector<byte>.Count, Vector<byte>.Count * sizeof(byte) * 8)); //tw.WriteLine(indent + string.Format("Vector<float>.Count:t{0}t# {1}bit", Vector<float>.Count, Vector<float>.Count * sizeof(float) * 8)); //tw.WriteLine(indent + string.Format("Vector<double>.Count:t{0}t# {1}bit", Vector<double>.Count, Vector<double>.Count * sizeof(double) * 8)); Assembly assembly; //assembly = typeof(Vector4).GetTypeInfo().Assembly; //tw.WriteLine(string.Format("Vector4.Assembly:t{0}", assembly)); //tw.WriteLine(string.Format("Vector4.Assembly.CodeBase:t{0}", assembly.CodeBase)); assembly = typeof(Vector<float>).GetTypeInfo().Assembly; tw.WriteLine(string.Format("Vector<T>.Assembly.CodeBase:t{0}", assembly.CodeBase)); OutputIntrinsics(tw, indent); } /// <summary> /// Output Intrinsics. /// </summary> /// <param name="tw">Output <see cref="TextWriter"/>.</param> /// <param name="indent">The indent.</param> public static void OutputIntrinsics(TextWriter tw, string indent) { if (null == tw) return; if (null == indent) indent = ""; #if NETCOREAPP3_0_OR_GREATER tw.WriteLine(); tw.WriteLine(indent + "[Intrinsics.X86]"); WriteLineFormat(tw, indent, "Aes.IsSupported:t{0}", System.Runtime.Intrinsics.X86.Aes.IsSupported); WriteLineFormat(tw, indent, "Aes.X64.IsSupported:t{0}", System.Runtime.Intrinsics.X86.Aes.X64.IsSupported); WriteLineFormat(tw, indent, "Avx.IsSupported:t{0}", Avx.IsSupported); WriteLineFormat(tw, indent, "Avx.X64.IsSupported:t{0}", Avx.X64.IsSupported); WriteLineFormat(tw, indent, "Avx2.IsSupported:t{0}", Avx2.IsSupported); WriteLineFormat(tw, indent, "Avx2.X64.IsSupported:t{0}", Avx2.X64.IsSupported); #if NET6_0_OR_GREATER WriteLineFormat(tw, indent, "AvxVnni.IsSupported:t{0}", AvxVnni.IsSupported); WriteLineFormat(tw, indent, "AvxVnni.X64.IsSupported:t{0}", AvxVnni.X64.IsSupported); #endif WriteLineFormat(tw, indent, "Bmi1.IsSupported:t{0}", Bmi1.IsSupported); WriteLineFormat(tw, indent, "Bmi1.X64.IsSupported:t{0}", Bmi1.X64.IsSupported); WriteLineFormat(tw, indent, "Bmi2.IsSupported:t{0}", Bmi2.IsSupported); WriteLineFormat(tw, indent, "Bmi2.X64.IsSupported:t{0}", Bmi2.X64.IsSupported); WriteLineFormat(tw, indent, "Fma.IsSupported:t{0}", Fma.IsSupported); WriteLineFormat(tw, indent, "Fma.X64.IsSupported:t{0}", Fma.X64.IsSupported); WriteLineFormat(tw, indent, "Lzcnt.IsSupported:t{0}", Lzcnt.IsSupported); WriteLineFormat(tw, indent, "Lzcnt.X64.IsSupported:t{0}", Lzcnt.X64.IsSupported); WriteLineFormat(tw, indent, "Pclmulqdq.IsSupported:t{0}", Pclmulqdq.IsSupported); WriteLineFormat(tw, indent, "Pclmulqdq.X64.IsSupported:t{0}", Pclmulqdq.X64.IsSupported); WriteLineFormat(tw, indent, "Popcnt.IsSupported:t{0}", Popcnt.IsSupported); WriteLineFormat(tw, indent, "Popcnt.X64.IsSupported:t{0}", Popcnt.X64.IsSupported); WriteLineFormat(tw, indent, "Sse.IsSupported:t{0}", Sse.IsSupported); WriteLineFormat(tw, indent, "Sse.X64.IsSupported:t{0}", Sse.X64.IsSupported); WriteLineFormat(tw, indent, "Sse2.IsSupported:t{0}", Sse2.IsSupported); WriteLineFormat(tw, indent, "Sse2.X64.IsSupported:t{0}", Sse2.X64.IsSupported); WriteLineFormat(tw, indent, "Sse3.IsSupported:t{0}", Sse3.IsSupported); WriteLineFormat(tw, indent, "Sse3.X64.IsSupported:t{0}", Sse3.X64.IsSupported); WriteLineFormat(tw, indent, "Sse41.IsSupported:t{0}", Sse41.IsSupported); WriteLineFormat(tw, indent, "Sse41.X64.IsSupported:t{0}", Sse41.X64.IsSupported); WriteLineFormat(tw, indent, "Sse42.IsSupported:t{0}", Sse42.IsSupported); WriteLineFormat(tw, indent, "Sse42.X64.IsSupported:t{0}", Sse42.X64.IsSupported); WriteLineFormat(tw, indent, "Ssse3.IsSupported:t{0}", Ssse3.IsSupported); WriteLineFormat(tw, indent, "Ssse3.X64.IsSupported:t{0}", Ssse3.X64.IsSupported); #if NET5_0_OR_GREATER WriteLineFormat(tw, indent, "X86Base.IsSupported:t{0}", X86Base.IsSupported); WriteLineFormat(tw, indent, "X86Base.X64.IsSupported:t{0}", X86Base.X64.IsSupported); #endif // NET5_0_OR_GREATER #if NET7_0_OR_GREATER WriteLineFormat(tw, indent, "X86Serialize.IsSupported:t{0}", X86Serialize.IsSupported); WriteLineFormat(tw, indent, "X86Serialize.X64.IsSupported:t{0}", X86Serialize.X64.IsSupported); #endif // NET7_0_OR_GREATER #endif // NETCOREAPP3_0_OR_GREATER #if NET5_0_OR_GREATER tw.WriteLine(); tw.WriteLine(indent + "[Intrinsics.Arm]"); WriteLineFormat(tw, indent, "AdvSimd.IsSupported:t{0}", AdvSimd.IsSupported); WriteLineFormat(tw, indent, "AdvSimd.Arm64.IsSupported:t{0}", AdvSimd.Arm64.IsSupported); WriteLineFormat(tw, indent, "Aes.IsSupported:t{0}", System.Runtime.Intrinsics.Arm.Aes.IsSupported); WriteLineFormat(tw, indent, "Aes.Arm64.IsSupported:t{0}", System.Runtime.Intrinsics.Arm.Aes.Arm64.IsSupported); WriteLineFormat(tw, indent, "ArmBase.IsSupported:t{0}", ArmBase.IsSupported); WriteLineFormat(tw, indent, "ArmBase.Arm64.IsSupported:t{0}", ArmBase.Arm64.IsSupported); WriteLineFormat(tw, indent, "Crc32.IsSupported:t{0}", Crc32.IsSupported); WriteLineFormat(tw, indent, "Crc32.Arm64.IsSupported:t{0}", Crc32.Arm64.IsSupported); WriteLineFormat(tw, indent, "Dp.IsSupported:t{0}", Dp.IsSupported); WriteLineFormat(tw, indent, "Dp.Arm64.IsSupported:t{0}", Dp.Arm64.IsSupported); WriteLineFormat(tw, indent, "Rdm.IsSupported:t{0}", Rdm.IsSupported); WriteLineFormat(tw, indent, "Rdm.Arm64.IsSupported:t{0}", Rdm.Arm64.IsSupported); WriteLineFormat(tw, indent, "Sha1.IsSupported:t{0}", Sha1.IsSupported); WriteLineFormat(tw, indent, "Sha1.Arm64.IsSupported:t{0}", Sha1.Arm64.IsSupported); WriteLineFormat(tw, indent, "Sha256.IsSupported:t{0}", Sha256.IsSupported); WriteLineFormat(tw, indent, "Sha256.Arm64.IsSupported:t{0}", Sha256.Arm64.IsSupported); #endif // NET5_0_OR_GREATER }
因向量类型与内在函数(Intrinsics Functions)紧密相关,于是该函数还输出了各类内在函数的支持信息。
在开发过程中,发现 .NET 版本升级时也在增加更多的 内在函数(Intrinsics Functions)。例如 Net 5.0 时增加了大量 Arm架构的内在函数,且增加了 X86Base。
可以利用条件编译,安全使用当前.NET 版本所允许使用的类。
2.3 创建测试数据(CreateVectorUseRotate)
使用 Vector<T>
的构造函数,只能创建单个数字重复的值,或是通过数据(或Span)逐一指定数字。前者太死板,后者又太繁琐。因为在不同的处理器上,Vector<T>
的长度是不同的。
目前在支持 Avx2指令集的机器上,Vector<T>
是256位的;而其他情况是 128位的。例如 128位的Vector<T>
含有4个Single,而256位的Vector<T>
含有8个Single,未来Vector<T>
很可能会有512位或更高。
对于测试来说,很多时候我们用一批循环数字就行。例如 128位时用 “a,b,c,d”,而256位时用“a,b,c,d,a,b,c,d”就好。
于是我建立了一个根据有限数据来循环铺满各个向量元素的函数。而且它是用 params
定义的可变参数,极大地方便了使用。代码如下。
/// <summary> /// Create Vector<T> use rotate. /// </summary> /// <typeparam name="T">Vector type.</typeparam> /// <param name="list">Source value list.</param> /// <returns>Returns Vector<T>.</returns> static Vector<T> CreateVectorUseRotate<T>(params T[] list) where T : struct { if (null == list || list.Length <= 0) return Vector<T>.Zero; T[] arr = new T[Vector<T>.Count]; int idx = 0; for(int i=0; i< arr.Length; ++i) { arr[i] = list[idx]; ++idx; if (idx >= list.Length) idx = 0; } Vector <T> rt = new Vector<T>(arr); return rt; }
2.4 开始测试(Run)
有了CreateVectorUseRotate帮忙构造测试数据后,我们可以很方便的建立测试程序的骨架了。代码如下:
public static void Run(TextWriter tw, string indent) { RunType(tw, indent, CreateVectorUseRotate(float.MinValue, float.PositiveInfinity, float.NaN, -1.2f, 0f, 1f, 2f, 4f), new Vector<float>(2.0f)); RunType(tw, indent, CreateVectorUseRotate(double.MinValue, double.PositiveInfinity, -1.2, 0), new Vector<double>(2.0)); RunType(tw, indent, CreateVectorUseRotate<sbyte>(sbyte.MinValue, sbyte.MaxValue, -1, 0, 1, 2, 3, 4), new Vector<sbyte>(2)); RunType(tw, indent, CreateVectorUseRotate<short>(short.MinValue, short.MaxValue, -1, 0, 1, 2, 3, 4, 127, 128), new Vector<short>(2)); RunType(tw, indent, CreateVectorUseRotate<int>(int.MinValue, int.MaxValue, -1, 0, 1, 2, 3, 32768), new Vector<int>(2)); RunType(tw, indent, CreateVectorUseRotate<long>(long.MinValue, long.MaxValue, -1, 0, 1, 2, 3), new Vector<long>(2)); RunType(tw, indent, CreateVectorUseRotate<byte>(byte.MinValue, byte.MaxValue, 0, 1, 2, 3, 4), new Vector<byte>(2)); RunType(tw, indent, CreateVectorUseRotate<ushort>(ushort.MinValue, ushort.MaxValue, 0, 1, 2, 3, 4, 255, 256), new Vector<ushort>(2)); RunType(tw, indent, CreateVectorUseRotate<uint>(uint.MinValue, uint.MaxValue, 0, 1, 2, 3, 65536), new Vector<uint>(2)); RunType(tw, indent, CreateVectorUseRotate<ulong>(ulong.MinValue, ulong.MaxValue, 0, 1, 2, 3), new Vector<ulong>(2)); }
2.5 测试指定类型(RunType)
RunType 是一个泛型函数,能够分别测试每一种数字类型。主要代码如下。
/// <summary> /// Run type demo. /// </summary> /// <typeparam name="T">Vector type.</typeparam> /// <param name="tw">Output <see cref="TextWriter"/>.</param> /// <param name="indent">The indent.</param> /// <param name="srcT">Source temp value.</param> /// <param name="src2">Source 2.</param> static void RunType<T>(TextWriter tw, string indent, Vector<T> srcT, Vector<T> src2) where T : struct { Vector<T> src0 = Vector<T>.Zero; Vector<T> src1 = Vector<T>.One; Vector<T> srcAllOnes = ~Vector<T>.Zero; int elementBitSize = (Vector<byte>.Count / Vector<T>.Count) * 8; tw.WriteLine(indent + string.Format("-- {0}, Vector<{0}>.Count={1} --", typeof(T).Name, Vector<T>.Count)); WriteLineFormat(tw, indent, "srcT:t{0}", srcT); //WriteLineFormat(tw, indent, "src2:t{0}", src2); WriteLineFormat(tw, indent, "srcAllOnes:t{0}", srcAllOnes); // -- Methods -- #region Methods //Abs<T>(Vector<T>) Returns a new vector whose elements are the absolute values of the given vector's elements. WriteLineFormat(tw, indent, "Abs(srcT):t{0}", Vector.Abs(srcT)); WriteLineFormat(tw, indent, "Abs(srcAllOnes):t{0}", Vector.Abs(srcAllOnes)); //Add<T>(Vector<T>, Vector<T>) Returns a new vector whose values are the sum of each pair of elements from two given vectors. WriteLineFormat(tw, indent, "Add(srcT, src1):t{0}", Vector.Add(srcT, src1)); WriteLineFormat(tw, indent, "Add(srcT, src2):t{0}", Vector.Add(srcT, src2)); //AndNot<T>(Vector<T>, Vector<T>) Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. WriteLineFormat(tw, indent, "AndNot(srcT, src1):t{0}", Vector.AndNot(srcT, src1)); WriteLineFormat(tw, indent, "AndNot(srcT, src2):t{0}", Vector.AndNot(srcT, src2));
参数列表里有2个测试用的向量值,分别是 srcT、src2。
方法的头部定义了一些常用的向量值,如:src0(0的值)、src1(1的值)、srcAllOnes(每个位全为1的值)。随后输出 srcT、srcAllOnes 的值,便于口算数据。
然后便是分别对 静态类Vector 的各个方法进行测试了。
2.5.1 非泛型的方法
静态类Vector所提供的大部分方法是泛型方法,它们在RunType这样的泛型方法内使用时是很方便的。
但静态类Vector的部分方法不是泛型方法,而是通过重载(overload)的方式提供各个类型的方法的。这时用起来麻烦一些,需要用 typeof 写分支代码。代码如下。
//ConvertToDouble(Vector<Int64>) Converts a Vector<Int64>to aVector<Double>. //ConvertToDouble(Vector<UInt64>) Converts a Vector<UInt64> to aVector<Double>. //ConvertToInt32(Vector<Single>) Converts a Vector<Single> to aVector<Int32>. //ConvertToInt64(Vector<Double>) Converts a Vector<Double> to aVector<Int64>. //ConvertToSingle(Vector<Int32>) Converts a Vector<Int32> to aVector<Single>. //ConvertToSingle(Vector<UInt32>) Converts a Vector<UInt32> to aVector<Single>. //ConvertToUInt32(Vector<Single>) Converts a Vector<Single> to aVector<UInt32>. //ConvertToUInt64(Vector<Double>) Converts a Vector<Double> to aVector<UInt64>. if (typeof(T) == typeof(Double)) { WriteLineFormat(tw, indent, "ConvertToInt64(srcT):t{0}", Vector.ConvertToInt64(Vector.AsVectorDouble(srcT))); WriteLineFormat(tw, indent, "ConvertToUInt64(srcT):t{0}", Vector.ConvertToUInt64(Vector.AsVectorDouble(srcT))); } else if (typeof(T) == typeof(Single)) { WriteLineFormat(tw, indent, "ConvertToInt32(srcT):t{0}", Vector.ConvertToInt32(Vector.AsVectorSingle(srcT))); WriteLineFormat(tw, indent, "ConvertToUInt32(srcT):t{0}", Vector.ConvertToUInt32(Vector.AsVectorSingle(srcT))); } else if (typeof(T) == typeof(Int32)) { WriteLineFormat(tw, indent, "ConvertToSingle(srcT):t{0}", Vector.ConvertToSingle(Vector.AsVectorInt32(srcT))); } else if (typeof(T) == typeof(UInt32)) { WriteLineFormat(tw, indent, "ConvertToSingle(srcT):t{0}", Vector.ConvertToSingle(Vector.AsVectorUInt32(srcT))); } else if (typeof(T) == typeof(Int64)) { WriteLineFormat(tw, indent, "ConvertToDouble(srcT):t{0}", Vector.ConvertToDouble(Vector.AsVectorInt64(srcT))); } else if (typeof(T) == typeof(UInt64)) { WriteLineFormat(tw, indent, "ConvertToDouble(srcT):t{0}", Vector.ConvertToDouble(Vector.AsVectorUInt64(srcT))); }
2.5.2 控制值的测试
部分方法具有控制参数,如进行左移位的ShiftLeft。于是最好写一个循环,分别测试不同的控制值。代码如下。
#if NET7_0_OR_GREATER //ShiftLeft(Vector<Byte>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<Int16>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<Int32>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<Int64>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<IntPtr>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<SByte>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<UInt16>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<UInt32>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<UInt64>, Int32) Shifts each element of a vector left by the specified amount. //ShiftLeft(Vector<UIntPtr>, Int32) Shifts each element of a vector left by the specified amount. int[] shiftCounts = new int[] { 1, elementBitSize - 1, elementBitSize, elementBitSize + 1, -1 }; foreach (int shiftCount in shiftCounts) { if (typeof(T) == typeof(Byte)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorByte(srcT), shiftCount)); } else if (typeof(T) == typeof(Int16)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorInt16(srcT), shiftCount)); } else if (typeof(T) == typeof(Int32)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorInt32(srcT), shiftCount)); } else if (typeof(T) == typeof(Int64)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorInt64(srcT), shiftCount)); } else if (typeof(T) == typeof(IntPtr)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorNInt(srcT), shiftCount)); } else if (typeof(T) == typeof(SByte)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorSByte(srcT), shiftCount)); } else if (typeof(T) == typeof(UInt16)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorUInt16(srcT), shiftCount)); } else if (typeof(T) == typeof(UInt32)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorUInt32(srcT), shiftCount)); } else if (typeof(T) == typeof(UInt64)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorUInt64(srcT), shiftCount)); } else if (typeof(T) == typeof(UIntPtr)) { WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):t{0}", Vector.ShiftLeft(Vector.AsVectorNUInt(srcT), shiftCount)); } }
2.5.3 out 参数
有一些方法通过out 参数返回了多个值,如能使数据变宽的 Widen。于是可利用“if块”来限制不同类型变量的作用域。代码如下。
//Widen(Vector<Byte>, Vector<UInt16>, Vector<UInt16>) Widens aVector<Byte> into two Vector<UInt16>instances. //Widen(Vector<Int16>, Vector<Int32>, Vector<Int32>) Widens a Vector<Int16> into twoVector<Int32> instances. //Widen(Vector<Int32>, Vector<Int64>, Vector<Int64>) Widens a Vector<Int32> into twoVector<Int64> instances. //Widen(Vector<SByte>, Vector<Int16>, Vector<Int16>) Widens a Vector<SByte> into twoVector<Int16> instances. //Widen(Vector<Single>, Vector<Double>, Vector<Double>) Widens a Vector<Single> into twoVector<Double> instances. //Widen(Vector<UInt16>, Vector<UInt32>, Vector<UInt32>) Widens a Vector<UInt16> into twoVector<UInt32> instances. //Widen(Vector<UInt32>, Vector<UInt64>, Vector<UInt64>) Widens a Vector<UInt32> into twoVector<UInt64> instances. if (typeof(T) == typeof(Single)) { Vector<Double> low, high; Vector.Widen(Vector.AsVectorSingle(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); } else if (typeof(T) == typeof(SByte)) { Vector<Int16> low, high; Vector.Widen(Vector.AsVectorSByte(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); } else if (typeof(T) == typeof(Int16)) { Vector<Int32> low, high; Vector.Widen(Vector.AsVectorInt16(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); } else if (typeof(T) == typeof(Int32)) { Vector<Int64> low, high; Vector.Widen(Vector.AsVectorInt32(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); } else if (typeof(T) == typeof(Byte)) { Vector<UInt16> low, high; Vector.Widen(Vector.AsVectorByte(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); } else if (typeof(T) == typeof(UInt16)) { Vector<UInt32> low, high; Vector.Widen(Vector.AsVectorUInt16(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); } else if (typeof(T) == typeof(UInt32)) { Vector<UInt64> low, high; Vector.Widen(Vector.AsVectorUInt32(srcT), out low, out high); WriteLineFormat(tw, indent, "Widen(srcT).low:t{0}", low); WriteLineFormat(tw, indent, "Widen(srcT).high:t{0}", high); }
2.6 格式化输出(WriteLineFormat)
虽然只读结构体 Vector<T>
支持 ToString,能够输出各个元素的数值。但在很多时候(例如使用 AndNot 的函数进行二进制运算时),我们需要观察它的二进制数据,故需要以十六进制的方式来显示其中的数据,但Vector<T>
不支持十六进制格式化(X)。
于是专门为 Vector<T>
写了一个重载函数,用于输出它的十六进制值。
/// <summary> /// Get hex string. /// </summary> /// <typeparam name="T">Vector value type.</typeparam> /// <param name="src">Source value.</param> /// <param name="separator">The separator.</param> /// <param name="noFixEndian">No fix endian.</param> /// <returns>Returns hex string.</returns> private static string GetHex<T>(Vector<T> src, string separator, bool noFixEndian) where T : struct { Vector<byte> list = Vector.AsVectorByte(src); int unitCount = Vector<T>.Count; int unitSize = Vector<byte>.Count / unitCount; bool fixEndian = false; if (!noFixEndian && BitConverter.IsLittleEndian) fixEndian = true; StringBuilder sb = new StringBuilder(); if (fixEndian) { // IsLittleEndian. for (int i=0; i < unitCount; ++i) { if ((i > 0)) { if (!string.IsNullOrEmpty(separator)) { sb.Append(separator); } } int idx = unitSize * (i+1) - 1; for(int j = 0; j < unitSize; ++j) { byte by = list[idx]; --idx; sb.Append(by.ToString("X2")); } } } else { for (int i = 0; i < Vector<byte>.Count; ++i) { byte by = list[i]; if ((i > 0) && (0 == i % unitSize)) { if (!string.IsNullOrEmpty(separator)) { sb.Append(separator); } } sb.Append(by.ToString("X2")); } } return sb.ToString(); } /// <summary> /// WriteLine with format. /// </summary> /// <typeparam name="T">Vector value type.</typeparam> /// <param name="tw">The TextWriter.</param> /// <param name="indent">The indent.</param> /// <param name="format">The format.</param> /// <param name="src">Source value</param> private static void WriteLineFormat<T>(TextWriter tw, string indent, string format, Vector<T> src) where T : struct { if (null == tw) return; string line = indent + string.Format(format, src); string hex = GetHex(src, " ", false); line += "t# (" + hex +")"; tw.WriteLine(line); }
三、运行结果
由于Vector类提供了大量的向量方法,再乘以10种基元类型,导致本程序的输出信息很长,达到了90多KB。
为了避免文章过长,于是这里仅摘录了主要的输出信息。
VectorClassDemo50 IsRelease: False EnvironmentVariable(PROCESSOR_IDENTIFIER): Intel64 Family 6 Model 142 Stepping 10, GenuineIntel Environment.ProcessorCount: 8 Environment.Is64BitOperatingSystem: True Environment.Is64BitProcess: True Environment.OSVersion: Microsoft Windows NT 10.0.19044.0 Environment.Version: 7.0.0 RuntimeEnvironment.GetRuntimeDirectory: C:Program FilesdotnetsharedMicrosoft.NETCore.App7.0.0 RuntimeInformation.FrameworkDescription: .NET 7.0.0 BitConverter.IsLittleEndian: True IntPtr.Size: 8 Vector.IsHardwareAccelerated: True Vector<byte>.Count: 32 # 256bit Vector<T>.Assembly.CodeBase: file:///C:/Program Files/dotnet/shared/Microsoft.NETCore.App/7.0.0/System.Private.CoreLib.dll [Intrinsics.X86] Aes.IsSupported: True Aes.X64.IsSupported: True Avx.IsSupported: True Avx.X64.IsSupported: True Avx2.IsSupported: True Avx2.X64.IsSupported: True AvxVnni.IsSupported: False AvxVnni.X64.IsSupported: False Bmi1.IsSupported: True Bmi1.X64.IsSupported: True Bmi2.IsSupported: True Bmi2.X64.IsSupported: True Fma.IsSupported: True Fma.X64.IsSupported: True Lzcnt.IsSupported: True Lzcnt.X64.IsSupported: True Pclmulqdq.IsSupported: True Pclmulqdq.X64.IsSupported: True Popcnt.IsSupported: True Popcnt.X64.IsSupported: True Sse.IsSupported: True Sse.X64.IsSupported: True Sse2.IsSupported: True Sse2.X64.IsSupported: True Sse3.IsSupported: True Sse3.X64.IsSupported: True Sse41.IsSupported: True Sse41.X64.IsSupported: True Sse42.IsSupported: True Sse42.X64.IsSupported: True Ssse3.IsSupported: True Ssse3.X64.IsSupported: True X86Base.IsSupported: True X86Base.X64.IsSupported: True X86Serialize.IsSupported: False X86Serialize.X64.IsSupported: False [Intrinsics.Arm] AdvSimd.IsSupported: False AdvSimd.Arm64.IsSupported: False Aes.IsSupported: False Aes.Arm64.IsSupported: False ArmBase.IsSupported: False ArmBase.Arm64.IsSupported: False Crc32.IsSupported: False Crc32.Arm64.IsSupported: False Dp.IsSupported: False Dp.Arm64.IsSupported: False Rdm.IsSupported: False Rdm.Arm64.IsSupported: False Sha1.IsSupported: False Sha1.Arm64.IsSupported: False Sha256.IsSupported: False Sha256.Arm64.IsSupported: False -- Single, Vector<Single>.Count=8 -- srcT: <-3.4028235E+38, ∞, NaN, -1.2, 0, 1, 2, 4> # (FF7FFFFF 7F800000 FFC00000 BF99999A 00000000 3F800000 40000000 40800000) srcAllOnes: <NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN> # (FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF) Abs(srcT): <3.4028235E+38, ∞, NaN, 1.2, 0, 1, 2, 4> # (7F7FFFFF 7F800000 7FC00000 3F99999A 00000000 3F800000 40000000 40800000) Abs(srcAllOnes): <NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN> # (7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF) Add(srcT, src1): <-3.4028235E+38, ∞, NaN, -0.20000005, 1, 2, 3, 5> # (FF7FFFFF 7F800000 FFC00000 BE4CCCD0 3F800000 40000000 40400000 40A00000) Add(srcT, src2): <-3.4028235E+38, ∞, NaN, 0.79999995, 2, 3, 4, 6> # (FF7FFFFF 7F800000 FFC00000 3F4CCCCC 40000000 40400000 40800000 40C00000) AndNot(srcT, src1): <-3.9999998, 2, -3, -2.350989E-39, 0, 0, 2, 2> # (C07FFFFF 40000000 C0400000 8019999A 00000000 00000000 40000000 40000000) AndNot(srcT, src2): <-0.99999994, 1, -1.5, -1.2, 0, 1, 0, 1.1754944E-38> # (BF7FFFFF 3F800000 BFC00000 BF99999A 00000000 3F800000 00000000 00800000) BitwiseAnd(srcT, src1): <0.5, 1, 1, 1, 0, 1, 0, 1.1754944E-38> # (3F000000 3F800000 3F800000 3F800000 00000000 3F800000 00000000 00800000) BitwiseAnd(srcT, src2): <2, 2, 2, 0, 0, 0, 2, 2> # (40000000 40000000 40000000 00000000 00000000 00000000 40000000 40000000) BitwiseOr(srcT, src1): <NaN, ∞, NaN, -1.2, 1, 1, ∞, ∞> # (FFFFFFFF 7F800000 FFC00000 BF99999A 3F800000 3F800000 7F800000 7F800000) BitwiseOr(srcT, src2): <-3.4028235E+38, ∞, NaN, NaN, 2, ∞, 2, 4> # (FF7FFFFF 7F800000 FFC00000 FF99999A 40000000 7F800000 40000000 40800000) ... Widen(srcT).low: <-3.4028234663852886E+38, ∞, NaN, -1.2000000476837158> # (C7EFFFFFE0000000 7FF0000000000000 FFF8000000000000 BFF3333340000000) Widen(srcT).high: <0, 1, 2, 4> # (0000000000000000 3FF0000000000000 4000000000000000 4010000000000000) ... -- Double, Vector<Double>.Count=4 -- srcT: <-1.7976931348623157E+308, ∞, -1.2, 0> # (FFEFFFFFFFFFFFFF 7FF0000000000000 BFF3333333333333 0000000000000000) srcAllOnes: <NaN, NaN, NaN, NaN> # (FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF) Abs(srcT): <1.7976931348623157E+308, ∞, 1.2, 0> # (7FEFFFFFFFFFFFFF 7FF0000000000000 3FF3333333333333 0000000000000000) Abs(srcAllOnes): <NaN, NaN, NaN, NaN> # (7FFFFFFFFFFFFFFF 7FFFFFFFFFFFFFFF 7FFFFFFFFFFFFFFF 7FFFFFFFFFFFFFFF) Add(srcT, src1): <-1.7976931348623157E+308, ∞, -0.19999999999999996, 1> # (FFEFFFFFFFFFFFFF 7FF0000000000000 BFC9999999999998 3FF0000000000000) Add(srcT, src2): <-1.7976931348623157E+308, ∞, 0.8, 2> # (FFEFFFFFFFFFFFFF 7FF0000000000000 3FE999999999999A 4000000000000000) AndNot(srcT, src1): <-3.9999999999999996, 2, -4.4501477170144E-309, 0> # (C00FFFFFFFFFFFFF 4000000000000000 8003333333333333 0000000000000000) AndNot(srcT, src2): <-0.9999999999999999, 1, -1.2, 0> # (BFEFFFFFFFFFFFFF 3FF0000000000000 BFF3333333333333 0000000000000000) BitwiseAnd(srcT, src1): <0.5, 1, 1, 0> # (3FE0000000000000 3FF0000000000000 3FF0000000000000 0000000000000000) BitwiseAnd(srcT, src2): <2, 2, 0, 0> # (4000000000000000 4000000000000000 0000000000000000 0000000000000000) BitwiseOr(srcT, src1): <NaN, ∞, -1.2, 1> # (FFFFFFFFFFFFFFFF 7FF0000000000000 BFF3333333333333 3FF0000000000000) BitwiseOr(srcT, src2): <-1.7976931348623157E+308, ∞, NaN, 2> # (FFEFFFFFFFFFFFFF 7FF0000000000000 FFF3333333333333 4000000000000000) ... -- UInt64, Vector<UInt64>.Count=4 -- srcT: <0, 18446744073709551615, 0, 1> # (0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000001) srcAllOnes: <18446744073709551615, 18446744073709551615, 18446744073709551615, 18446744073709551615> # (FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF) Abs(srcT): <0, 18446744073709551615, 0, 1> # (0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000001) Abs(srcAllOnes): <18446744073709551615, 18446744073709551615, 18446744073709551615, 18446744073709551615> # (FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF) Add(srcT, src1): <1, 0, 1, 2> # (0000000000000001 0000000000000000 0000000000000001 0000000000000002) Add(srcT, src2): <2, 1, 2, 3> # (0000000000000002 0000000000000001 0000000000000002 0000000000000003) AndNot(srcT, src1): <0, 18446744073709551614, 0, 0> # (0000000000000000 FFFFFFFFFFFFFFFE 0000000000000000 0000000000000000) AndNot(srcT, src2): <0, 18446744073709551613, 0, 1> # (0000000000000000 FFFFFFFFFFFFFFFD 0000000000000000 0000000000000001) BitwiseAnd(srcT, src1): <0, 1, 0, 1> # (0000000000000000 0000000000000001 0000000000000000 0000000000000001) BitwiseAnd(srcT, src2): <0, 2, 0, 0> # (0000000000000000 0000000000000002 0000000000000000 0000000000000000) BitwiseOr(srcT, src1): <1, 18446744073709551615, 1, 1> # (0000000000000001 FFFFFFFFFFFFFFFF 0000000000000001 0000000000000001) BitwiseOr(srcT, src2): <2, 18446744073709551615, 2, 3> # (0000000000000002 FFFFFFFFFFFFFFFF 0000000000000002 0000000000000003) ... ShiftLeft(srcT, 1): <0, 18446744073709551614, 0, 2> # (0000000000000000 FFFFFFFFFFFFFFFE 0000000000000000 0000000000000002) ShiftLeft(srcT, 63): <0, 9223372036854775808, 0, 9223372036854775808> # (0000000000000000 8000000000000000 0000000000000000 8000000000000000) ShiftLeft(srcT, 64): <0, 18446744073709551615, 0, 1> # (0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000001) ShiftLeft(srcT, 65): <0, 18446744073709551614, 0, 2> # (0000000000000000 FFFFFFFFFFFFFFFE 0000000000000000 0000000000000002) ShiftLeft(srcT, -1): <0, 9223372036854775808, 0, 9223372036854775808> # (0000000000000000 8000000000000000 0000000000000000 8000000000000000)
完整的测试结果,请运行程序进行查看。
源码地址——
https://github.com/zyl910/BenchmarkVector/tree/main/VectorClassDemo
参考文献
- MSDN《
Vector<T>
结构》. https://docs.microsoft.com/zh-cn/dotnet/api/system.numerics.vector-1?view=netcore-1.0 - MSDN《Vector 类》. https://docs.microsoft.com/zh-cn/dotnet/api/system.numerics.vector?view=netcore-1.0
- Nuget《System.Numerics.Vectors》. https://www.nuget.org/packages/System.Numerics.Vectors
- Intel《Intel® Intrinsics Guide》. https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
- zyl910《
C# 使用SIMD向量类型加速浮点数组求和运算(1):使用Vector4、Vector<T>
》. https://www.cnblogs.com/zyl910/p/dotnet_simd_BenchmarkVector1.html - zyl910《C#利用条件编译判断.NET平台及版本的办法,NET5标准符号清单及使用经验》. https://www.cnblogs.com/zyl910/p/cs_standard_conditional_compilation_symbols.html