- A+
当编写应用程序时,经常性需要花费大量的时间与精力处理业务逻辑,往往业务逻辑的变化需要重构或者增加大量代码,对开发测试人员很不友好。
之前在这篇文章说过,可以使用脚本引擎来将我们需要经常变化的代码进行动态编译执行,自由度非常大,不过对应的需要资源也多。如果只是针对非常具体业务逻辑的变化,可以尝试使用RulesEngine对程序进行操作。
下文使用了官方示例且部分内容翻译自说明文档
简介
RulesEngine是微软推出的规则引擎,规则引擎在很多企业开发中有所应用,是处理经常变动需求的一种优雅的方法。个人任务,规则引擎适用于以下的一些场景:
- 输入输出类型数量比较固定,但是执行逻辑经常变化;
- switch条件经常变化,复杂switch语句的替代;
- 会变动的,具有多种条件或者规则的业务逻辑;
- 规则自由度不要求特别高的场景。(这种情况建议使用脚本引擎)
RulesEngine的规则使用JSON进行存储,通过lambda表达式方式表述规则(Rules)。
安装很方便,直接使用nuget进行安装:
install-pacakge RulesEngine
规则定义
需要有Rules,有WorkflowName,然后还有一些属性。
[ { "WorkflowName": "Discount", "Rules": [ { "RuleName": "GiveDiscount10", "SuccessEvent": "10", "ErrorMessage": "One or more adjust rules failed.", "ErrorType": "Error", "RuleExpressionType": "LambdaExpression", "Expression": "input1.country == "india" AND input1.loyalityFactor <= 2 AND input1.totalPurchasesToDate >= 5000 AND input2.totalOrders > 2 AND input3.noOfVisitsPerMonth > 2" } ] } ]
除了标准的
RuleExpressionType
,还可以通过定义Rules嵌套多个条件,下面是Or逻辑。
{ "RuleName": "GiveDiscount30NestedOrExample", "SuccessEvent": "30", "ErrorMessage": "One or more adjust rules failed.", "ErrorType": "Error", "Operator": "OrElse", "Rules":[ { "RuleName": "IsLoyalAndHasGoodSpend", "ErrorMessage": "One or more adjust rules failed.", "ErrorType": "Error", "RuleExpressionType": "LambdaExpression", "Expression": "input1.loyalityFactor > 3 AND input1.totalPurchasesToDate >= 50000 AND input1.totalPurchasesToDate <= 100000" }, { "RuleName": "OrHasHighNumberOfTotalOrders", "ErrorMessage": "One or more adjust rules failed.", "ErrorType": "Error", "RuleExpressionType": "LambdaExpression", "Expression": "input2.totalOrders > 15" } ] }
示例
可以从官方的代码库中下载示例,定义了上述规则,就可以直接开始用了。示例描述了这么一个应用场景:
根据不同的客户属性,提供不同的折扣。由于销售的情况变化较快,提供折扣的规则也需要经常变动。因此比较适用于规则引擎。
public void Run() { Console.WriteLine($"Running {nameof(BasicDemo)}...."); //创建输入 var basicInfo = "{"name": "hello","email": "abcy@xyz.com","creditHistory": "good","country": "canada","loyalityFactor": 3,"totalPurchasesToDate": 10000}"; var orderInfo = "{"totalOrders": 5,"recurringItems": 2}"; var telemetryInfo = "{"noOfVisitsPerMonth": 10,"percentageOfBuyingToVisit": 15}"; var converter = new ExpandoObjectConverter(); dynamic input1 = JsonConvert.DeserializeObject<ExpandoObject>(basicInfo, converter); dynamic input2 = JsonConvert.DeserializeObject<ExpandoObject>(orderInfo, converter); dynamic input3 = JsonConvert.DeserializeObject<ExpandoObject>(telemetryInfo, converter); var inputs = new dynamic[] { input1, input2, input3 }; //加载规则 var files = Directory.GetFiles(Directory.GetCurrentDirectory(), "Discount.json", SearchOption.AllDirectories); if (files == null || files.Length == 0) throw new Exception("Rules not found."); var fileData = File.ReadAllText(files[0]); var workflowRules = JsonConvert.DeserializeObject<List<WorkflowRules>>(fileData); //初始化规则引擎 var bre = new RulesEngine.RulesEngine(workflowRules.ToArray(), null); string discountOffered = "No discount offered."; //执行规则 List<RuleResultTree> resultList = bre.ExecuteAllRulesAsync("Discount", inputs).Result; //处理结果 resultList.OnSuccess((eventName) => { discountOffered = $"Discount offered is {eventName} % over MRP."; }); resultList.OnFail(() => { discountOffered = "The user is not eligible for any discount."; }); Console.WriteLine(discountOffered); }
输入
输入一般来说是IEnumerable<dynamic>
或者是匿名类型,上面实例展示的是由json反序列化形成的dynamic类型,对于程序生成的数据,使用匿名类型更加方便。
var nestedInput = new { SimpleProp = "simpleProp", NestedProp = new { SimpleProp = "nestedSimpleProp", ListProp = new List<ListItem> { new ListItem { Id = 1, Value = "first" }, new ListItem { Id = 2, Value = "second" } } } };
命名空间
和脚本引擎一样,默认规则引擎只能访问System的命名空间。如果需要使用到稍微复杂一些的类型,可以自己定义类型或者函数。比如定义一个这样的函数:
public static class Utils { public static bool CheckContains(string check, string valList) { if (String.IsNullOrEmpty(check) || String.IsNullOrEmpty(valList)) return false; var list = valList.Split(',').ToList(); return list.Contains(check); } }
需要使用的时候,先将类传递给RulesEngine:
var reSettingsWithCustomTypes = new ReSettings { CustomTypes = new Type[] { typeof(Utils) } }; var engine = new RulesEngine.RulesEngine(workflowRules.ToArray(), null, reSettingsWithCustomTypes);
然后就可以直接在表达式中使用了。
"Expression": "Utils.CheckContains(input1.country, "india,usa,canada,France") == true"
规则参数
默认情况下,规则的输入使用的是类似input1 input2这样的形式,如果想直观一点,可以使用RuleParameter
来进行封装具体的参数类型。
RuleParameter ruleParameter = new RuleParameter("NIP", nestedInput); var resultList = bre.ExecuteAllRulesAsync(workflow.WorkflowName, ruleParameter).Result;
本地变量
如果表达式比较复杂的情况下,可以使用本地变量来进行分段处理,这对调试来说会比较方便。
本地变量的关键字为localParams,可以将中间的内容简单理解成var name = expression
{ "name": "allow_access_if_all_mandatory_trainings_are_done_or_access_isSecure", "errorMessage": "Please complete all your training(s) to get access to this content or access it from a secure domain/location.", "errorType": "Error", "localParams": [ { "name": "completedSecurityTrainings", "expression": "MasterSecurityComplainceTrainings.Where(Status.Equals("Completed", StringComparison.InvariantCultureIgnoreCase))" }, { "name": "completedProjectTrainings", "expression": "MasterProjectComplainceTrainings.Where(Status.Equals("Completed", StringComparison.InvariantCultureIgnoreCase))" }, { "name": "isRequestAccessSecured", "expression": "UserRequestDetails.Location.Country == "India" ? ((UserRequestDetails.Location.City == "Bangalore" && UserRequestDetails.Domain="xxxx")? true : false):false" } ], "expression": "(completedSecurityTrainings.Any() && completedProjectTrainings.Any()) || isRequestAccessSecured " }
总结
使用规则引擎,可以将经常变动的业务逻辑独立摘出来,为我们编写动态、可拓展的程序提供了很大的便利。RulesEngine这个东西提供的API也比较简洁,上手非常简单。