使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

  • A+
所属分类:linux技术
摘要

本文将从 GPU-Operator 概念介绍、安装部署、深度训练测试应用部署,以及在 KubeSphere 使用自定义监控面板对接 GPU 监控,从原理到实践,逐步浅析介绍与实践 GPU-Operator。

本文将从 GPU-Operator 概念介绍、安装部署、深度训练测试应用部署,以及在 KubeSphere 使用自定义监控面板对接 GPU 监控,从原理到实践,逐步浅析介绍与实践 GPU-Operator。

GPU-Operator简介

众所周知,Kubernetes 平台通过设备插件框架提供对特殊硬件资源的访问,如 NVIDIA GPU、网卡、Infiniband 适配器和其他设备。然而,使用这些硬件资源配置和管理节点需要配置多个软件组件,如驱动程序、容器运行时或其他依赖库,这是困难的和容易出错的。

NVIDIA GPU Operator 由 Nvidia 公司开源,利用了 Kubernetes 平台的 Operator 控制模式,方便地自动化集成管理 GPU 所需的 NVIDIA 设备组件,有效地解决了上述GPU设备集成的痛点。这些组件包括 NVIDIA 驱动程序(用于启用 CUDA )、用于 GPU 的 Kubernetes 设备插件、NVIDIA Container 运行时、自动节点标签、基于 DCGM 的监控等。

NVIDIA GPU Operator 的不仅实现了设备和组件一体化集成,而且它管理 GPU 节点就像管理 CPU 节点一样方便,无需单独为 GPU 节点提供特殊的操作系统。值得关注的是,它将GPU各组件容器化,提供 GPU 能力,非常适合快速扩展和管理规模 GPU 节点。当然,对于已经为GPU组件构建了特殊操作系统的应用场景来说,显得并不是那么合适了。

GPU-Operator 架构原理

前文提到,NVIDIA GPU Operator 管理 GPU 节点就像管理 CPU 节点一样方便,那么它是如何实现这一能力呢?

我们一起来看看 GPU-Operator 运行时的架构图:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

通过图中的描述,我们可以知道, GPU-Operator 是通过实现了 Nvidia 容器运行时,以runC作为输入,在runCpreStart hook中注入了一个名叫nvidia-container-toolkit的脚本,该脚本调用libnvidia-container CLI设置一系列合适的flags,使得容器运行后具有 GPU 能力。

GPU-Operator 安装说明

前提条件

在安装 GPU Operator 之前,请配置好安装环境如下:

  • 所有节点不需要预先安装NVIDIA组件(driver,container runtime,device plugin);
  • 所有节点必须配置Docker,cri-o, 或者containerd.对于 docker 来说,可以参考这里
  • 如果使用HWE内核(e.g. kernel 5.x) 的 Ubuntu 18.04 LTS 环境下,需要给nouveau driver添加黑名单,需要更新initramfs
$ sudo vim /etc/modprobe.d/blacklist.conf # 在尾部添加黑名单 blacklist nouveau options nouveau modeset=0 $ sudo update-initramfs -u $ reboot $ lsmod | grep nouveau # 验证nouveau是否已禁用 $ cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c  #本文测试时处理器架构代号为Broadwell 16 Intel Core Processor (Broadwell) 
  • 节点发现(NFD) 需要在每个节点上配置,默认情况会直接安装,如果已经配置,请在Helm chart变量设置nfd.enabledfalse, 再安装;
  • 如果使用 Kubernetes 1.13和1.14, 需要激活 KubeletPodResources

支持的linux版本

OS Name / Version Identifier amd64 / x86_64 ppc64le arm64 / aarch64
Amazon Linux 1 amzn1 X
Amazon Linux 2 amzn2 X
Amazon Linux 2017.09 amzn2017.09 X
Amazon Linux 2018.03 amzn2018.03 X
Open Suse Leap 15.0 sles15.0 X
Open Suse Leap 15.1 sles15.1 X
Debian Linux 9 debian9 X
Debian Linux 10 debian10 X
Centos 7 centos7 X X
Centos 8 centos8 X X X
RHEL 7.4 rhel7.4 X X
RHEL 7.5 rhel7.5 X X
RHEL 7.6 rhel7.6 X X
RHEL 7.7 rhel7.7 X X
RHEL 8.0 rhel8.0 X X X
RHEL 8.1 rhel8.1 X X X
RHEL 8.2 rhel8.2 X X X
Ubuntu 16.04 ubuntu16.04 X X
Ubuntu 18.04 ubuntu18.04 X X X
Ubuntu 20.04 ubuntu20.04 X X X

支持的容器运行时

OS Name / Version amd64 / x86_64 ppc64le arm64 / aarch64
Docker 18.09 X X X
Docker 19.03 X X X
RHEL/CentOS 8 podman X
CentOS 8 Docker X
RHEL/CentOS 7 Docker X

安装doker环境

可参考 Docker 官方文档

安装NVIDIA Docker

配置 stable 仓库和 GPG key :

$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)  && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -  && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list 

更新软件仓库后安装nvidia-docker2并添加运行时配置:

$ sudo apt-get update $ sudo apt-get install -y nvidia-docker2 ----- What would you like to do about it ?  Your options are: Y or I  : install the package maintainer's version N or O  : keep your currently-installed version D     : show the differences between the versions Z     : start a shell to examine the situation ----- # 初次安装,遇到以上交互式问题可选择N # 如果选择Y会覆盖你的一些默认配置 # 选择N后,将以下配置添加到etc/docker/daemon.json {   "runtimes": {       "nvidia": {           "path": "/usr/bin/nvidia-container-runtime",           "runtimeArgs": []       }   } } 

重启docker:

$ sudo systemctl restart docker 

安装Helm

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3     && chmod 700 get_helm.sh     && ./get_helm.sh 

添加helm仓库

$ helm repo add nvidia https://nvidia.github.io/gpu-operator     && helm repo update 

安装 NVIDIA GPU Operator

docker as runtime

$ kubectl create ns gpu-operator-resources $ helm install gpu-operator nvidia/gpu-operator -n gpu-operator-resources --wait 

如果需要指定驱动版本,可参考如下:

$ helm install gpu-operator nvidia/gpu-operator -n gpu-operator-resources  --set driver.version="450.80.02" 

crio as runtime

helm install gpu-operator nvidia/gpu-operator -n gpu-operator-resources    --set operator.defaultRuntime=crio 

containerd as runtime

helm install gpu-operator nvidia/gpu-operator -n gpu-operator-resources    --set operator.defaultRuntime=containerd     Furthermore, when setting containerd as the defaultRuntime the following options are also available: toolkit:   env:   - name: CONTAINERD_CONFIG     value: /etc/containerd/config.toml   - name: CONTAINERD_SOCKET     value: /run/containerd/containerd.sock   - name: CONTAINERD_RUNTIME_CLASS     value: nvidia   - name: CONTAINERD_SET_AS_DEFAULT     value: true 

由于安装的镜像比较大,所以初次安装过程中可能会出现超时的情形,请检查你的镜像是否在拉取中!可以考虑使用离线安装解决该类问题,参考离线安装的链接。

使用 values.yaml 安装

$ helm install gpu-operator nvidia/gpu-operator -n gpu-operator-resources -f values.yaml 

考虑离线安装

应用部署

检查已部署 operator 服务状态

检查 pods 状态

$ kubectl get pods -n gpu-operator-resources NAME                                                          READY   STATUS      RESTARTS   AGE gpu-feature-discovery-4gk78                                   1/1     Running     0          35s gpu-operator-858fc55fdb-jv488                                 1/1     Running     0          2m52s gpu-operator-node-feature-discovery-master-7f9ccc4c7b-2sg6r   1/1     Running     0          2m52s gpu-operator-node-feature-discovery-worker-cbkhn              1/1     Running     0          2m52s gpu-operator-node-feature-discovery-worker-m8jcm              1/1     Running     0          2m52s nvidia-container-toolkit-daemonset-tfwqt                      1/1     Running     0          2m42s nvidia-dcgm-exporter-mqns5                                    1/1     Running     0          38s nvidia-device-plugin-daemonset-7npbs                          1/1     Running     0          53s nvidia-device-plugin-validation                               0/1     Completed   0          49s nvidia-driver-daemonset-hgv6s                                 1/1     Running     0          2m47s 

检查节点资源是否处于可分配

$ kubectl describe node worker-gpu-001 --- Allocatable:   cpu:                15600m   ephemeral-storage:  82435528Ki   hugepages-2Mi:      0   memory:             63649242267   nvidia.com/gpu:     1  #check here   pods:               110 --- 

部署官方文档中的两个实例

实例一

$ cat cuda-load-generator.yaml apiVersion: v1 kind: Pod metadata:    name: dcgmproftester spec:    restartPolicy: OnFailure    containers:    - name: dcgmproftester11    image: nvidia/samples:dcgmproftester-2.0.10-cuda11.0-ubuntu18.04    args: ["--no-dcgm-validation", "-t 1004", "-d 120"]    resources:       limits:          nvidia.com/gpu: 1    securityContext:       capabilities:          add: ["SYS_ADMIN"] EOF 

实例二

$ curl -LO https://nvidia.github.io/gpu-operator/notebook-example.yml $ cat notebook-example.yml apiVersion: v1 kind: Service metadata:   name: tf-notebook   labels:     app: tf-notebook spec:   type: NodePort   ports:   - port: 80     name: http     targetPort: 8888     nodePort: 30001   selector:     app: tf-notebook --- apiVersion: v1 kind: Pod metadata:   name: tf-notebook   labels:     app: tf-notebook spec:   securityContext:     fsGroup: 0   containers:   - name: tf-notebook     image: tensorflow/tensorflow:latest-gpu-jupyter     resources:       limits:         nvidia.com/gpu: 1     ports:     - containerPort: 8 

基于 Jupyter Notebook 应用运行深度学习训练任务

部署应用

$ kubectl apply -f cuda-load-generator.yaml  pod/dcgmproftester created $ kubectl apply -f notebook-example.yml        service/tf-notebook created pod/tf-notebook created 

查看 GPU 处于已分配状态:

$ kubectl describe node worker-gpu-001 --- Allocated resources:   (Total limits may be over 100 percent, i.e., overcommitted.)   Resource           Requests     Limits   --------           --------     ------   cpu                1087m (6%)   1680m (10%)   memory             1440Mi (2%)  1510Mi (2%)   ephemeral-storage  0 (0%)       0 (0%)   nvidia.com/gpu     1            1 #check this Events:              <none> 

当有 GPU 任务发布给平台时,GPU 资源从可分配状态转变为已分配状态,安装任务发布的先后顺序,第二个任务在第一个任务运行结束后开始运行:

$ kubectl get pods --watch NAME             READY   STATUS    RESTARTS   AGE dcgmproftester   1/1     Running   0          76s tf-notebook      0/1     Pending   0          58s ------ NAME             READY   STATUS      RESTARTS   AGE dcgmproftester   0/1     Completed   0          4m22s tf-notebook      1/1     Running     0          4m4s 

获取应用端口信息:

$ kubectl get svc # get the nodeport of the svc, 30001 gpu-operator-1611672791-node-feature-discovery   ClusterIP   10.233.10.222   <none>        8080/TCP       12h kubernetes                                       ClusterIP   10.233.0.1      <none>        443/TCP        12h tf-notebook                                      NodePort    10.233.53.116   <none>        80:30001/TCP   7m52s 

查看日志,获取登录口令:

$ kubectl logs tf-notebook  [I 21:50:23.188 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret [I 21:50:23.390 NotebookApp] Serving notebooks from local directory: /tf [I 21:50:23.391 NotebookApp] The Jupyter Notebook is running at: [I 21:50:23.391 NotebookApp] http://tf-notebook:8888/?token=3660c9ee9b225458faaf853200bc512ff2206f635ab2b1d9 [I 21:50:23.391 NotebookApp]  or http://127.0.0.1:8888/?token=3660c9ee9b225458faaf853200bc512ff2206f635ab2b1d9 [I 21:50:23.391 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 21:50:23.394 NotebookApp]    To access the notebook, open this file in a browser:       file:///root/.local/share/jupyter/runtime/nbserver-1-open.html    Or copy and paste one of these URLs:       http://tf-notebook:8888/?token=3660c9ee9b225458faaf853200bc512ff2206f635ab2b1d9    or http://127.0.0.1:8888/?token=3660c9ee9b225458faaf853200bc512ff2206f635ab2b1d9 

运行深度学习任务

进入jupyter notebook 环境后,尝试进入终端,运行深度学习任务:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

进入terminal后拉取tersorflow测试代码并运行:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

与此同时,开启另外一个终端运行nvidia-smi查看 GPU 监控使用情况:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

利用 KubeSphere 自定义监控功能监控 GPU

部署 ServiceMonitor

gpu-operator帮我们提供了nvidia-dcgm-exporter这个exportor, 只需要将它集成到Prometheus的可采集对象中,也就是ServiceMonitor中,我们就能获取GPU监控数据了:

$ kubectl get pods -n gpu-operator-resources NAME                                       READY   STATUS      RESTARTS   AGE gpu-feature-discovery-ff4ng                1/1     Running     2          15h nvidia-container-toolkit-daemonset-2vxjz   1/1     Running     0          15h nvidia-dcgm-exporter-pqwfv                 1/1     Running     0          5h27m #here nvidia-device-plugin-daemonset-42n74       1/1     Running     0          5h27m nvidia-device-plugin-validation            0/1     Completed   0          5h27m nvidia-driver-daemonset-dvd9r              1/1     Running     3          15h 

可以构建一个busybox查看该exporter暴露的指标:

$ kubectl get svc -n gpu-operator-resources NAME                                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE gpu-operator-node-feature-discovery   ClusterIP   10.233.54.111   <none>        8080/TCP   56m nvidia-dcgm-exporter                  ClusterIP   10.233.53.196   <none>        9400/TCP   54m $ kubectl exec -it busybox-sleep -- sh $ wget http://nvidia-dcgm-exporter.gpu-operator-resources:9400/metrics $ cat metrics ---- DCGM_FI_DEV_SM_CLOCK{gpu="0",UUID="GPU-eeff7856-475a-2eb7-6408-48d023d9dd28",device="nvidia0",container="tf-notebook",namespace="default",pod="tf-notebook"} 405 DCGM_FI_DEV_MEM_CLOCK{gpu="0",UUID="GPU-eeff7856-475a-2eb7-6408-48d023d9dd28",device="nvidia0",container="tf-notebook",namespace="default",pod="tf-notebook"} 715 DCGM_FI_DEV_GPU_TEMP{gpu="0",UUID="GPU-eeff7856-475a-2eb7-6408-48d023d9dd28",device="nvidia0",container="tf-notebook",namespace="default",pod="tf-notebook"} 30 ---- 

查看nvidia-dcgm-exporter暴露的svcep

$ kubectl describe svc nvidia-dcgm-exporter -n gpu-operator-resources Name:                     nvidia-dcgm-exporter Namespace:                gpu-operator-resources Labels:                   app=nvidia-dcgm-exporter Annotations:              prometheus.io/scrape: true Selector:                 app=nvidia-dcgm-exporter Type:                     NodePort IP:                       10.233.28.200 Port:                     gpu-metrics  9400/TCP TargetPort:               9400/TCP NodePort:                 gpu-metrics  31129/TCP Endpoints:                10.233.84.54:9400 Session Affinity:         None External Traffic Policy:  Cluster Events:                   <none> 

配置ServiceMonitor定义清单:

$ cat custom/gpu-servicemonitor.yaml  apiVersion: monitoring.coreos.com/v1 kind: ServiceMonitor metadata:   name: nvidia-dcgm-exporter   namespace: gpu-operator-resources    labels:      app: nvidia-dcgm-exporter spec:   jobLabel: nvidia-gpu   endpoints:   - port: gpu-metrics     interval: 15s   selector:     matchLabels:       app: nvidia-dcgm-exporter   namespaceSelector:     matchNames:     - gpu-operator-resources $ kubectl apply -f custom/gpu-servicemonitor.yaml 

检查 GPU 指标是否被采集到(可选)

servicemonitor提交给kubesphere平台后,通过暴露prometheus-k8sNodePort,我们可以在PrometheusUI上验证一下是否采集到的相关指标:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

创建 KubeSphere GPU 自定义监控面板

KubeSphere 3.0

如果部署的 KubeSphere 版本是KubeSphere 3.0,需要简单地配置以下几个步骤,便可顺利完成可观察性监控。

首先, 登录kubsphere console后,创建一个企业空间名称为ks-monitoring-demo, 名称可按需创建;

其次,需要将ServiceMonitor所在的目标名称空间gpu-operator-resources分配为已存在的企业空间中,以便纳入监控。

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

最后,进入目标企业空间,在纳管的项目找到gpu-operator-resources, 点击后找到可自定义监控界面, 即可添加自定义监控。

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

后续版本

后续版本可选择添加集群监控

创建自定义监控

下载dashboard以及配置namespace:

$ curl -LO https://raw.githubusercontent.com/kubesphere/monitoring-dashboard/master/contrib/gallery/nvidia-gpu-dcgm-exporter-dashboard.yaml $ cat nvidia-gpu-dcgm-exporter-dashboard.yaml ---- apiVersion: monitoring.kubesphere.io/v1alpha1 kind: Dashboard metadata:   name: nvidia-dcgm-exporter-dashboard-rev1   namespace: gpu-operator-resources  # check here spec: ----- 

可以直接命令行apply或者在自定义监控面板中选择编辑模式进行导入:
使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

正确导入后:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

在上面创建的jupyter notebook运行深度学习测试任务后,可以明显地观察到相关GPU指标变化:

使用 GPU-Operator 与 KubeSphere 简化深度学习训练与监控 GPU

卸载

$ helm list -n gpu-operator-resources NAME            NAMESPACE               REVISION        UPDATED                                 STATUS          CHART                   APP VERSION gpu-operator    gpu-operator-resources  1               2021-02-20 11:50:56.162559286 +0800 CST deployed        gpu-operator-1.5.2      1.5.2      $ helm uninstall gpu-operator -n gpu-operator-resources 

重启无法使用 GPU

关于已部署正常运行的gpu-operator和AI应用的集群,重启GPU主机后会出现没法用上 GPU 的情况,极有可能是因为插件还没加载,应用优先进行了载入,就会导致这种问题。这时,只需要优先保证插件运行正常,然后重新部署应用即可。

GPU-Operator 常见问题

GPU-Operator 重启后无法使用

答:关于已部署正常运行的gpu-operator和 AI 应用的集群,重启 GPU 主机后会出现没法用上 GPU 的情况,极有可能是因为插件还没加载,应用优先进行了载入,就会导致这种问题。这时,只需要优先保证插件运行正常,然后重新部署应用即可。

Nvidia k8s-device-plugin 与 GPU-Operator 方案对比?

我之前针对GPU使用的是 https://github.com/NVIDIA/k8s-device-pluginhttps://github.com/NVIDIA/gpu-monitoring-tools 相结合的方案来监控 GPU,请问这个方案与 GPU-Operator的方案相比,孰优孰劣一些?

答:个人认为 GPU-Operator 更简单易用,其自带 GPU 注入能力不需要构建专用的 OS,并且支持节点发现与可插拔,能够自动化集成管理 GPU 所需的 NVIDIA 设备组件,相对来说还是很省事的。

有没有 KubeSphere 自定义监控的详细使用教程?

答:可以参考 KubeSphere 官方文档来使用自定义监控。

参考资料

官方代码仓库

官方文档

本文由博客一文多发平台 OpenWrite 发布!