WPF 折线/坐标点绘制 曲线抽稀 (Douglas-Peucker)道格拉斯-普克算法

  • A+
所属分类:.NET技术
摘要

这个算法经常用,例如GIS,数据保存,数据绘制都会用到。算法是1973提出的,久经考验的算法,具体详情可以参考百度。

这个算法经常用,例如GIS,数据保存,数据绘制都会用到。

算法是1973提出的,久经考验的算法,具体详情可以参考百度。

算法比较简单,大意是:

① 给出一个限定值表示距离

② 点集合或者坐标集合的首尾自动相连接成为直线,并会记录首尾两点到输出集合

③ 记录后寻找集合中距离这个直线最远的点,当这个点的距离超过限定值时,记录这个点,并由此将集合分为两段,首到点,点到尾

④ 对每个线段重复步骤②,步骤③,直至结束

 

也可以参考其他网友给出的算法推导. 

 

其中 找出最远点的点的算法,可以利用 三个点形成的面积,也就是三角形的面积。

其中求出点到线的距离,也就是三角形的高。

我们可以认为首尾连接的线是底部边,我们有底部边的起点和终点坐标,可以利用向量公式,尾坐标减去首坐标,求出向量坐标后,再利用向量的求模公式求出长度。

最后三角形面积除以底的长度乘与2就等于高度了。

 

 

截图

WPF  折线/坐标点绘制 曲线抽稀 (Douglas-Peucker)道格拉斯-普克算法

 

 

代码是现成的,虽然实现也不困难, 偷懒....

 public class Douglas_Peucker     {         /// <summary>         /// Douglas-Peucker算法         /// </summary>         /// <param name="Points">坐标点集合</param>         /// <param name="Tolerance">限定值</param>         /// <returns></returns>         public static List<Point> DouglasPeuckerReduction             (List<Point> Points, Double Tolerance)         {             if (Points == null || Points.Count < 3)                 return Points;              Int32 firstPoint = 0;             Int32 lastPoint = Points.Count - 1;             List<Int32> pointIndexsToKeep = new List<Int32>();              //默认添加首尾两点             pointIndexsToKeep.Add(firstPoint);             pointIndexsToKeep.Add(lastPoint);              //首尾两点不能相同             while (Points[firstPoint].Equals(Points[lastPoint]))             {                 lastPoint--;             }             //递归计算             DouglasPeuckerReduction(Points, firstPoint, lastPoint,             Tolerance, ref pointIndexsToKeep);             //返回集合             List<Point> returnPoints = new List<Point>();             pointIndexsToKeep.Sort();             foreach (Int32 index in pointIndexsToKeep)             {                 returnPoints.Add(Points[index]);             }              return returnPoints;         }          /// <summary>         /// 递归计算每个点到线段的长度,并分段递归重复计算         /// </summary>         /// <param name="points">点集合</param>         /// <param name="firstPoint">首点</param>         /// <param name="lastPoint">尾点</param>         /// <param name="tolerance">限定值</param>         /// <param name="pointIndexsToKeep">点集合下标</param>         private static void DouglasPeuckerReduction(List<Point>             points, Int32 firstPoint, Int32 lastPoint, Double tolerance,             ref List<Int32> pointIndexsToKeep)         {             Double maxDistance = 0;             Int32 indexFarthest = 0;             //遍历每个点             for (Int32 index = firstPoint; index < lastPoint; index++)             {                 Double distance = PerpendicularDistance                     (points[firstPoint], points[lastPoint], points[index]);                 //只寻找线段上最长的点                 if (distance > maxDistance)                 {                     //替换值                     maxDistance = distance;                     //记录下标                     indexFarthest = index;                 }             }             //确定最大值超过限定值且不为首点             if (maxDistance > tolerance && indexFarthest != 0)             {                 //记录最大距离的点的下标                 pointIndexsToKeep.Add(indexFarthest);                 //分段计算 Startpoint-MaxDistance                  DouglasPeuckerReduction(points, firstPoint,                 indexFarthest, tolerance, ref pointIndexsToKeep);                 //分段计算 MaxDistance-Lastpoint                 DouglasPeuckerReduction(points, indexFarthest,                 lastPoint, tolerance, ref pointIndexsToKeep);             }         }          /// <summary>         /// 求出点到两点的距离         /// </summary>         /// <param name="pt1">线段的起点</param>         /// <param name="pt2">线段的终点</param>         /// <param name="p">计算的点</param>         /// <returns></returns>         public static Double PerpendicularDistance             (Point Point1, Point Point2, Point Point)         {             //Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)|   *Area of triangle             //Base = v((x1-x2)²+(x1-x2)²)                               *Base of Triangle*             //Area = .5*Base*H                                          *Solve for height             //Height = Area/.5/Base             //求面积             Double area = Math.Abs(.5 * (Point1.X * Point2.Y + Point2.X *             Point.Y + Point.X * Point1.Y - Point2.X * Point1.Y - Point.X *             Point2.Y - Point1.X * Point.Y));             //求首尾两点的长度             Double bottom = Math.Sqrt(Math.Pow(Point1.X - Point2.X, 2) +             Math.Pow(Point1.Y - Point2.Y, 2));             //三角形面积除以底*2=高             //三角形面积除以高*2=底             Double height = area / bottom * 2;              return height;              //Another option             //Double A = Point.X - Point1.X;             //Double B = Point.Y - Point1.Y;             //Double C = Point2.X - Point1.X;             //Double D = Point2.Y - Point1.Y;              //Double dot = A * C + B * D;             //Double len_sq = C * C + D * D;             //Double param = dot / len_sq;              //Double xx, yy;              //if (param < 0)             //{             //    xx = Point1.X;             //    yy = Point1.Y;             //}             //else if (param > 1)             //{             //    xx = Point2.X;             //    yy = Point2.Y;             //}             //else             //{             //    xx = Point1.X + param * C;             //    yy = Point1.Y + param * D;             //}              //Double d = DistanceBetweenOn2DPlane(Point, new Point(xx, yy));         }     }

 

使用这个算法后,能够将点减少很多,在视觉上差距不大,适用于很多点的时候,绘制困难,通过这个算法减少点的数量.