- A+
Trie 树
所有在老鼠岛上的老鼠都应该学习Trie树!——伟大的吱嘎鼠
Trie树,就是所有Oier们喜闻乐见的字符串的超级优化的数据结构!
已阅,狗屁不通。——吱嘎鼠
字典树,顾名思义,是一颗很像字典的树,将相同前缀的字符串合并在一起,当出现不同时就分支,成为这样的树。
在这样的树上,我们可以很快地完成关于前缀的问题。
Master of Both 题面
先看题面~
Hui-Bot教授是弦论和高级数据结构的大师,所以他提出了一个有趣的问题。给定一个仅由小写英文字母组成的 (n) 字符串序列,当按字典顺序比较字符串时,该序列中有多少个反转?
作为Hui-Bot最出色的学生,普塔塔和布达达分别掌握了高超的弦理论和先进的数据结构技能,他们轻松地一起解决了这个问题。然而,存在 (q) 个不同的平行宇宙,其中字母表中的字符并不按原始顺序出现。
形式上,每个宇宙中的字母都是一个字符串,它是26小写英文字母的排列,表示每个字符出现的顺序。
当且仅当以下条件之一成立时,字符串 (a) 按字典顺序小于字符串 (b) :
(a) 是 (b) 的前缀,但 (a ne b) ;
在a和b不同的第一个位置,字符串a有一个字母在字母表中出现的时间早于b中对应的字母。
长度n的序列a中的反转次数是满足 $ 1 le i le j le n$ 、 (a_j < a_i) 的有序对(i,j)的数量。
请帮助各个宇宙的普塔塔和布达达解决问题。
输入 $1 le n le 5 cdot 10^5 $ , $ 1 le q le 5 cdot 10^4 $
(1 le lvert s_i rvert le 10^6) (lvert si rvert) 的总和不大于 (10 ^ 6)
鼠的思路
这道题要看的是字符串,一个一个比较过去复杂度岂不是会爆炸awa
所以将所有对都记录下来,看看其他时间的单词表里这个对是不是逆序的,用字典树预处理就好啦!
ll trie[N][37], cnt = 0, sm[N], rel[37][37]; void insert(string s){ int p = 0; for(auto c : s){ int u = c - 'a' + 1;//为什么要 + 1,那当然是因为有的坏字符串是别的字符串的前缀,所以要在后面加一个比 $a$ 字典序都小的东西 if(!trie[u]) trie
[u] = ++cnt; for(int j = 0; j <= 26; j++){//看看自己的“同事”,记录对 if(j == u)continue; rel[j][u] += sm[trie
[j]];//有时候一个点会挤着很多字符串 } sm
[u]] ++;//锵锵,统计一下 } }
接下来就是要统计了
while(q--){ string s; cin >> s; ll ret = 0; for(int i = 0; i < 26; i++){ ret += rel展开 - 'a' + 1][0]; for(int j = 0; j < i; j++) ret += rel展开 - 'a' + 1]展开 - 'a' + 1]; } write(ret), putchar('n'); }
我知道你们想看什么——AC Code
#include<bits/stdc++.h> using namespace std; typedef long long ll; template<class T> void write(T x){ if(x < 0)putchar('-'),x = -x; if(x > 9)write(x / 10); putchar(x % 10 + '0'); } template<class T> inline T read(){ T x = 0, f = 1;char ch = getchar(); while(ch < '0'||ch > '9'){if(ch == '-') f = -1;ch = getchar();} while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * f; } template<class T> inline T read(T &x){ return x = read<ll>();} int n, q; const int N = 2e6 + 100; ll trie[N][37], cnt = 0, sm[N], rel[37][37]; void insert(string s){ int p = 0; for(auto c : s){ int u = c - 'a' + 1; if(!trie[u]) trie
[u] = ++cnt; for(int j = 0; j <= 26; j++){ if(j == u)continue; rel[j][u] += sm[trie
[j]]; } sm
[u]] ++; } } int main(){ read(n), read(q); for(int i = 1; i <= n; i++){ string s; cin >> s; s += 'a' - 1; insert(s); } while(q--){ string s; cin >> s; ll ret = 0; for(int i = 0; i < 26; i++){ ret += rel展开 - 'a' + 1][0]; for(int j = 0; j < i; j++) ret += rel展开 - 'a' + 1]展开 - 'a' + 1]; } write(ret), putchar('n'); } }