根据SVG Arc求出其开始角、摆动角和椭圆圆心

  • A+
所属分类:.NET技术
摘要

目前Svg的Arc的参数字符串如下:除了a表示标识为Arc之外,其余参数说明如下:实际上,在W3C的有关SVG Arc实现有相关文档和公式


SVG Arc

目前Svg的Arc的参数字符串如下:

a  rx  ry  x-axis-rotation  large-arc-flag  sweep-flag  x  y  

除了a表示标识为Arc之外,其余参数说明如下:

参数 说明
rx 椭圆半长轴
ry 椭圆半短轴
x-axis-rotation 椭圆相对于坐标系的旋转角度,角度数而非弧度数
large-arc-flag 是否优(大)弧:0否,1是
sweep-flag 绘制方向:0逆时针,1顺时针
x 圆弧终点的x坐标
y 圆弧终点的y坐标

求Arc的开始角和摆动角

实际上,在W3C的有关SVG Arc实现有相关文档和公式

当已知参数:

x1 y1 x2 y2 fA fS rx ry φ 

求出以下参数的值:

cx cy θ1 Δθ 

其中已知参数说明如下:

参数 说明 备注
(x1,y1) 当前坐标
(x2,y2) 终点坐标
fA 是否优(大)弧 Arc的参数字符:large-arc-flag
fS 绘制方向 Arc的参数字符:sweep-flag
rx 椭圆半长轴 Arc的参数字符:rx
ry 椭圆半短轴 Arc的参数字符:ry
φ 椭圆相对于坐标系的旋转角度 Arc的参数字符:x-axis-rotation

需要求的参数说明:

参数 说明 备注
(cx,cy) 椭圆中心坐标点
θ1 起始角
Δθ 起始角到结束角的夹角(摆动角) 结束角= 起始角θ1+摆动角Δθ

那么则有如下公式:

根据SVG Arc求出其开始角、摆动角和椭圆圆心

代码如下:

        /// <summary>         /// 获取弧线的开始角度和摆动角度         /// </summary>         /// <param name="x1">起点X</param>         /// <param name="y1">起点Y</param>         /// <param name="x2">终点X</param>         /// <param name="y2">终点Y</param>         /// <param name="fA">优劣弧:1 优弧  0劣弧</param>         /// <param name="fs">顺逆时针绘制:1 顺时针  0 逆时针</param>         /// <param name="rx">椭圆半长轴</param>         /// <param name="ry">椭圆半短轴</param>         /// <param name="φ">旋转角</param>         /// <returns></returns>         private static (double startAngle, double swAngle) GetArcStartAngAndSwAng(double x1, double y1, double x2, double y2, double fA, double fs, double rx, double ry, double φ)         {              var matrix1 = new Matrix { M11 = Math.Cos(φ), M12 = Math.Sin(φ), M21 = -Math.Sin(φ), M22 = Math.Cos(φ) };             var matrix2 = new Matrix { M11 = (x1 - x2) / 2, M21 = (y1 - y2) / 2 };             var matrixX1Y1 = Matrix.Multiply(matrix1, matrix2);              var x1_ = matrixX1Y1.M11;             var y1_ = matrixX1Y1.M21;              var a = Math.Pow(rx, 2) * Math.Pow(ry, 2) - Math.Pow(rx, 2) * Math.Pow(y1_, 2) - Math.Pow(ry, 2) * Math.Pow(x1_, 2);             var b = Math.Pow(ry, 2) * Math.Pow(y1_, 2) + Math.Pow(ry, 2) * Math.Pow(x1_, 2);              double c = 0;             if (fA == fs)             {                 c = -Math.Sqrt(a / b);             }             else             {                 c = Math.Sqrt(a / b);             }              var matrixCxCy = new Matrix { M11 = c * (rx * y1_ / ry), M21 = c * (-ry * x1_ / rx) };              var cx_ = matrixCxCy.M11;             var cy_ = matrixCxCy.M21;  

这时候我们通过矩阵运算得到了矩阵x1y1和矩阵cxcy,然后还有以下公式求开始角和摆动角:

根据SVG Arc求出其开始角、摆动角和椭圆圆心

那么代码如下:

             //求开始角             //cos<夹角> = 两向量之积 / 两向量模的乘积             //< 夹角 > = arcCos(两向量之积 / 两向量模的乘积)              //向量U的坐标             double vectorUx = 1;             double vectorUy = 0;              //向量V的坐标             double vectorVx = (x1_ - cx_) / rx;             double vectorVy = (y1_ - cy_) / ry;               var multiVectorUVectorV = vectorUx * vectorVx + vectorUy * vectorVy; //两向量的乘积             var vectorUMod = Math.Sqrt(vectorUx * vectorUx + vectorUy * vectorUy);//向量U的模             var vectorVMod = Math.Sqrt(vectorVx * vectorVx + vectorVy * vectorVy);//向量V的模             var cosResult = multiVectorUVectorV / (vectorUMod * vectorVMod);              var startAngle = Math.Acos(cosResult) * 180 / Math.PI;               //求摆动角             //cos<夹角> = 两向量之积 / 两向量模的乘积             //< 夹角 > = arcCos(两向量之积 / 两向量模的乘积)              //向量U的坐标             vectorUx = (x1_ - cx_) / rx;             vectorUy = (y1_ - cy_) / ry;              //向量V的坐标             vectorVx = (-x1_ - cx_) / rx;             vectorVy = (-y1_ - cy_) / ry;              multiVectorUVectorV = vectorUx * vectorVx + vectorUy * vectorVy; //两向量的乘积             vectorUMod = Math.Sqrt(vectorUx * vectorUx + vectorUy * vectorUy);//向量U的模             vectorVMod = Math.Sqrt(vectorVx * vectorVx + vectorVy * vectorVy);//向量V的模             cosResult = multiVectorUVectorV / (vectorUMod * vectorVMod);              var swAngle = Math.Acos(cosResult) * 180 / Math.PI;              if (fs == 0)             {                 swAngle = -swAngle;             }             else             {                 swAngle = Math.Abs(swAngle);             } 

那么我们来测试下,我准备了一段Arc字符串:

"M0,0 A18.10005249343832,16.00031496062992,60,0,0,-21.634424410598417,-21.472913522584044" 

然后测试代码如下:

         private void ButtonBase_OnClick(object sender, RoutedEventArgs e)         {             var pathGeometry = PathGeometry.CreateFromGeometry(Geometry.Parse("M0,0 A18.10005249343832,16.00031496062992,60,0,0,-21.634424410598417,-21.472913522584044"));             var pathFigure = pathGeometry.Figures[0];              if (pathFigure.Segments[0] is ArcSegment arcSegment)             {                 var x1 = pathFigure.StartPoint.X;                 var y1 = pathFigure.StartPoint.Y;                 var rx = arcSegment.Size.Width;                 var ry = arcSegment.Size.Height;                 var φ = arcSegment.RotationAngle;                 var fA = arcSegment.IsLargeArc ? 1 : 0;                 var fs = arcSegment.SweepDirection is SweepDirection.Clockwise ? 1 : 0;                 var x2 = arcSegment.Point.X;                 var y2 = arcSegment.Point.Y;                   var (startAngle, swAngle) = GetArcStartAngAndSwAng(x1, y1, x2, y2, fA, fs, rx, ry, φ);                 //算出来接近startAngle为179°,swAngle为-118°                                  StringBuilder stringPath = new StringBuilder();                 stringPath.Append($"M {x1} {y1}");                 var openXmlArcToArcStrNew = SvgArcToArcStr(stringPath, rx, ry, φ, startAngle, swAngle, pathFigure.StartPoint);                 this.NewPath.Data = Geometry.Parse(openXmlArcToArcStrNew);             }          } 

然后我们再通过求出来的开始角和摆动角求出之前的那段Arc:

         /// <summary>         /// OpenXml Arc 转为SVG Arc 字符串         /// </summary>         /// <param name="stringPath">路径字符串</param>         /// <param name="rx">椭圆半长轴</param>         /// <param name="ry">椭圆半短轴</param>         /// <param name="φ">旋转角</param>         /// <param name="stAng">起始角</param>         /// <param name="swAng">摆动角</param>         /// <param name="currentPoint">当前坐标</param>         /// <returns></returns>         private string SvgArcToArcStr(StringBuilder stringPath, double rx, double ry, double φ, double stAng, double swAng, Point currentPoint)         {             const string comma = ",";              var θ1 = stAng / 180 * Math.PI;             var Δθ = swAng / 180 * Math.PI;             //是否是大弧             var isLargeArcFlag = Math.Abs(Δθ) > Math.PI;             //是否是顺时针             var isClockwise = Δθ > 0;               //修复当椭圆弧线进行360°时,起始点和终点一样,会导致弧线变成点,因此-1°才进行计算             if (System.Math.Abs(Δθ) == 2 * System.Math.PI)             {                 Δθ = Δθ - Δθ / 360;             }              //获取终点坐标             var pt = GetArcArbitraryPoint(rx, ry, Δθ, θ1, φ, currentPoint);              currentPoint = pt;              // 格式如下             // A rx ry x-axis-rotation large-arc-flag sweep-flag x y             // 这里 large-arc-flag 是 1 和 0 表示             stringPath.Append("A")                    .Append(rx) //rx                    .Append(comma)                    .Append(ry) //ry                    .Append(comma)                    .Append(φ) // x-axis-rotation                    .Append(comma)                    .Append(isLargeArcFlag ? "1" : "0") //large-arc-flag                    .Append(comma)                    .Append(isClockwise ? "1" : "0") // sweep-flag                    .Append(comma)                    .Append(pt.X)                    .Append(comma)                    .Append(pt.Y)                    .Append(' ');             return stringPath.ToString();          }          /// <summary>         /// 获取椭圆任意一点坐标(终点)         /// </summary>         /// <param name="rx">椭圆半长轴</param>         /// <param name="ry">椭圆半短轴</param>         /// <param name="Δθ">摆动角度(起始角的摆动角度,也就是起始角+摆动角=结束角)</param>         /// <param name="θ1">起始角</param>         /// <param name="φ">旋转角</param>         /// <param name="currentPoint">起点</param>         /// <returns></returns>         private static Point GetArcArbitraryPoint(double rx, double ry, double Δθ, double θ1, double φ, Point currentPoint)         {             //开始点的椭圆任意一点的二维矩阵方程式             var matrixX1Y1 = new Matrix { M11 = currentPoint.X, M21 = currentPoint.Y };              var matrix1 = new Matrix { M11 = Math.Cos(φ), M12 = -Math.Sin(φ), M21 = Math.Sin(φ), M22 = Math.Cos(φ) };             var matrix2 = new Matrix { M11 = rx * Math.Cos(θ1), M21 = ry * Math.Sin(θ1) };             var multiplyMatrix1Matrix2 = Matrix.Multiply(matrix1, matrix2);             var matrixCxCy = new Matrix { M11 = matrixX1Y1.M11 - multiplyMatrix1Matrix2.M11, M21 = matrixX1Y1.M21 - multiplyMatrix1Matrix2.M21 };              //终点的椭圆任意一点的二维矩阵方程式             var matrix3 = new Matrix { M11 = rx * Math.Cos(θ1 + Δθ), M21 = ry * Math.Sin(θ1 + Δθ) };             var multiplyMatrix1Matrix3 = Matrix.Multiply(matrix1, matrix3);             var matrixX2Y2 = new Matrix { M11 = multiplyMatrix1Matrix3.M11 + matrixCxCy.M11, M21 = multiplyMatrix1Matrix3.M21 + matrixCxCy.M21 };              return new Point(matrixX2Y2.M11, matrixX2Y2.M21);         } 

效果如下:

根据SVG Arc求出其开始角、摆动角和椭圆圆心

可以看到根据算出来的开始角和摆动角,再带入计算出来的弧线(关于计算弧线的算法可以参考我之前的博客)是跟之前的弧线一致的,也间接验证了算法的准确性

求Arc的椭圆圆心

求圆心公式如下:

根据SVG Arc求出其开始角、摆动角和椭圆圆心

则代码如下:

        /// <summary>         /// 获取弧线的椭圆圆心         /// </summary>         /// <param name="x1">起点X</param>         /// <param name="y1">起点Y</param>         /// <param name="x2">终点X</param>         /// <param name="y2">终点Y</param>         /// <param name="fA">优劣弧:1 优弧  0劣弧</param>         /// <param name="fs">顺逆时针绘制:1 顺时针  0 逆时针</param>         /// <param name="rx">椭圆半长轴</param>         /// <param name="ry">椭圆半短轴</param>         /// <param name="φ">旋转角</param>         /// <returns></returns>         private static Point GetArcCenterPoint(double x1, double y1, double x2, double y2, double fA, double fs, double rx, double ry, double φ)         {              var matrix1 = new Matrix { M11 = Math.Cos(φ), M12 = Math.Sin(φ), M21 = -Math.Sin(φ), M22 = Math.Cos(φ) };             var matrix2 = new Matrix { M11 = (x1 - x2) / 2, M21 = (y1 - y2) / 2 };             var matrixX1Y1 = Matrix.Multiply(matrix1, matrix2);              var x1_ = matrixX1Y1.M11;             var y1_ = matrixX1Y1.M21;              var a = Math.Pow(rx, 2) * Math.Pow(ry, 2) - Math.Pow(rx, 2) * Math.Pow(y1_, 2) - Math.Pow(ry, 2) * Math.Pow(x1_, 2);             var b = Math.Pow(ry, 2) * Math.Pow(y1_, 2) + Math.Pow(ry, 2) * Math.Pow(x1_, 2);              double c = 0;             if (fA == fs)             {                 c = -Math.Sqrt(a / b);             }             else             {                 c = Math.Sqrt(a / b);             }              var matrixCx_Cy_ = new Matrix { M11 = c * (rx * y1_ / ry), M21 = c * (-ry * x1_ / rx) };              var tempMatrix = new Matrix { M11 = Math.Cos(φ), M12 = -Math.Sin(φ), M21 = Math.Sin(φ), M22 = Math.Cos(φ) };             var multiplyMatrix = Matrix.Multiply(tempMatrix, matrixCx_Cy_);              var matrixCxCy=new Matrix(){M11 = multiplyMatrix.M11+((x1+x2)/2),M21= multiplyMatrix.M21+((y1+y2)/2) };              return new Point(matrixCxCy.M11, matrixCxCy.M21);          } 

最终通过上面Svg Arc字符串算出来的椭圆圆心为(-17.42169108128391,-5.368374418803782)

源码

BlogCodeSample/OpenxmlActToSvgSample at main · ZhengDaoWang/BlogCodeSample

参考

Implementation Notes — SVG 2