- A+
所属分类:.NET技术
SVG Arc
目前Svg的Arc的参数字符串如下:
a rx ry x-axis-rotation large-arc-flag sweep-flag x y
除了a
表示标识为Arc之外,其余参数说明如下:
参数 | 说明 |
---|---|
rx | 椭圆半长轴 |
ry | 椭圆半短轴 |
x-axis-rotation | 椭圆相对于坐标系的旋转角度,角度数而非弧度数 |
large-arc-flag | 是否优(大)弧:0否,1是 |
sweep-flag | 绘制方向:0逆时针,1顺时针 |
x | 圆弧终点的x坐标 |
y | 圆弧终点的y坐标 |
求Arc的开始角和摆动角
实际上,在W3C的有关SVG Arc实现有相关文档和公式
当已知参数:
x1 y1 x2 y2 fA fS rx ry φ
求出以下参数的值:
cx cy θ1 Δθ
其中已知参数说明如下:
参数 | 说明 | 备注 |
---|---|---|
(x1,y1) | 当前坐标 | |
(x2,y2) | 终点坐标 | |
fA | 是否优(大)弧 | Arc的参数字符:large-arc-flag |
fS | 绘制方向 | Arc的参数字符:sweep-flag |
rx | 椭圆半长轴 | Arc的参数字符:rx |
ry | 椭圆半短轴 | Arc的参数字符:ry |
φ | 椭圆相对于坐标系的旋转角度 | Arc的参数字符:x-axis-rotation |
需要求的参数说明:
参数 | 说明 | 备注 |
---|---|---|
(cx,cy) | 椭圆中心坐标点 | |
θ1 | 起始角 | |
Δθ | 起始角到结束角的夹角(摆动角) | 结束角= 起始角θ1+摆动角Δθ |
那么则有如下公式:
代码如下:
/// <summary> /// 获取弧线的开始角度和摆动角度 /// </summary> /// <param name="x1">起点X</param> /// <param name="y1">起点Y</param> /// <param name="x2">终点X</param> /// <param name="y2">终点Y</param> /// <param name="fA">优劣弧:1 优弧 0劣弧</param> /// <param name="fs">顺逆时针绘制:1 顺时针 0 逆时针</param> /// <param name="rx">椭圆半长轴</param> /// <param name="ry">椭圆半短轴</param> /// <param name="φ">旋转角</param> /// <returns></returns> private static (double startAngle, double swAngle) GetArcStartAngAndSwAng(double x1, double y1, double x2, double y2, double fA, double fs, double rx, double ry, double φ) { var matrix1 = new Matrix { M11 = Math.Cos(φ), M12 = Math.Sin(φ), M21 = -Math.Sin(φ), M22 = Math.Cos(φ) }; var matrix2 = new Matrix { M11 = (x1 - x2) / 2, M21 = (y1 - y2) / 2 }; var matrixX1Y1 = Matrix.Multiply(matrix1, matrix2); var x1_ = matrixX1Y1.M11; var y1_ = matrixX1Y1.M21; var a = Math.Pow(rx, 2) * Math.Pow(ry, 2) - Math.Pow(rx, 2) * Math.Pow(y1_, 2) - Math.Pow(ry, 2) * Math.Pow(x1_, 2); var b = Math.Pow(ry, 2) * Math.Pow(y1_, 2) + Math.Pow(ry, 2) * Math.Pow(x1_, 2); double c = 0; if (fA == fs) { c = -Math.Sqrt(a / b); } else { c = Math.Sqrt(a / b); } var matrixCxCy = new Matrix { M11 = c * (rx * y1_ / ry), M21 = c * (-ry * x1_ / rx) }; var cx_ = matrixCxCy.M11; var cy_ = matrixCxCy.M21;
这时候我们通过矩阵运算得到了矩阵x1y1和矩阵cxcy,然后还有以下公式求开始角和摆动角:
那么代码如下:
//求开始角 //cos<夹角> = 两向量之积 / 两向量模的乘积 //< 夹角 > = arcCos(两向量之积 / 两向量模的乘积) //向量U的坐标 double vectorUx = 1; double vectorUy = 0; //向量V的坐标 double vectorVx = (x1_ - cx_) / rx; double vectorVy = (y1_ - cy_) / ry; var multiVectorUVectorV = vectorUx * vectorVx + vectorUy * vectorVy; //两向量的乘积 var vectorUMod = Math.Sqrt(vectorUx * vectorUx + vectorUy * vectorUy);//向量U的模 var vectorVMod = Math.Sqrt(vectorVx * vectorVx + vectorVy * vectorVy);//向量V的模 var cosResult = multiVectorUVectorV / (vectorUMod * vectorVMod); var startAngle = Math.Acos(cosResult) * 180 / Math.PI; //求摆动角 //cos<夹角> = 两向量之积 / 两向量模的乘积 //< 夹角 > = arcCos(两向量之积 / 两向量模的乘积) //向量U的坐标 vectorUx = (x1_ - cx_) / rx; vectorUy = (y1_ - cy_) / ry; //向量V的坐标 vectorVx = (-x1_ - cx_) / rx; vectorVy = (-y1_ - cy_) / ry; multiVectorUVectorV = vectorUx * vectorVx + vectorUy * vectorVy; //两向量的乘积 vectorUMod = Math.Sqrt(vectorUx * vectorUx + vectorUy * vectorUy);//向量U的模 vectorVMod = Math.Sqrt(vectorVx * vectorVx + vectorVy * vectorVy);//向量V的模 cosResult = multiVectorUVectorV / (vectorUMod * vectorVMod); var swAngle = Math.Acos(cosResult) * 180 / Math.PI; if (fs == 0) { swAngle = -swAngle; } else { swAngle = Math.Abs(swAngle); }
那么我们来测试下,我准备了一段Arc字符串:
"M0,0 A18.10005249343832,16.00031496062992,60,0,0,-21.634424410598417,-21.472913522584044"
然后测试代码如下:
private void ButtonBase_OnClick(object sender, RoutedEventArgs e) { var pathGeometry = PathGeometry.CreateFromGeometry(Geometry.Parse("M0,0 A18.10005249343832,16.00031496062992,60,0,0,-21.634424410598417,-21.472913522584044")); var pathFigure = pathGeometry.Figures[0]; if (pathFigure.Segments[0] is ArcSegment arcSegment) { var x1 = pathFigure.StartPoint.X; var y1 = pathFigure.StartPoint.Y; var rx = arcSegment.Size.Width; var ry = arcSegment.Size.Height; var φ = arcSegment.RotationAngle; var fA = arcSegment.IsLargeArc ? 1 : 0; var fs = arcSegment.SweepDirection is SweepDirection.Clockwise ? 1 : 0; var x2 = arcSegment.Point.X; var y2 = arcSegment.Point.Y; var (startAngle, swAngle) = GetArcStartAngAndSwAng(x1, y1, x2, y2, fA, fs, rx, ry, φ); //算出来接近startAngle为179°,swAngle为-118° StringBuilder stringPath = new StringBuilder(); stringPath.Append($"M {x1} {y1}"); var openXmlArcToArcStrNew = SvgArcToArcStr(stringPath, rx, ry, φ, startAngle, swAngle, pathFigure.StartPoint); this.NewPath.Data = Geometry.Parse(openXmlArcToArcStrNew); } }
然后我们再通过求出来的开始角和摆动角求出之前的那段Arc:
/// <summary> /// OpenXml Arc 转为SVG Arc 字符串 /// </summary> /// <param name="stringPath">路径字符串</param> /// <param name="rx">椭圆半长轴</param> /// <param name="ry">椭圆半短轴</param> /// <param name="φ">旋转角</param> /// <param name="stAng">起始角</param> /// <param name="swAng">摆动角</param> /// <param name="currentPoint">当前坐标</param> /// <returns></returns> private string SvgArcToArcStr(StringBuilder stringPath, double rx, double ry, double φ, double stAng, double swAng, Point currentPoint) { const string comma = ","; var θ1 = stAng / 180 * Math.PI; var Δθ = swAng / 180 * Math.PI; //是否是大弧 var isLargeArcFlag = Math.Abs(Δθ) > Math.PI; //是否是顺时针 var isClockwise = Δθ > 0; //修复当椭圆弧线进行360°时,起始点和终点一样,会导致弧线变成点,因此-1°才进行计算 if (System.Math.Abs(Δθ) == 2 * System.Math.PI) { Δθ = Δθ - Δθ / 360; } //获取终点坐标 var pt = GetArcArbitraryPoint(rx, ry, Δθ, θ1, φ, currentPoint); currentPoint = pt; // 格式如下 // A rx ry x-axis-rotation large-arc-flag sweep-flag x y // 这里 large-arc-flag 是 1 和 0 表示 stringPath.Append("A") .Append(rx) //rx .Append(comma) .Append(ry) //ry .Append(comma) .Append(φ) // x-axis-rotation .Append(comma) .Append(isLargeArcFlag ? "1" : "0") //large-arc-flag .Append(comma) .Append(isClockwise ? "1" : "0") // sweep-flag .Append(comma) .Append(pt.X) .Append(comma) .Append(pt.Y) .Append(' '); return stringPath.ToString(); } /// <summary> /// 获取椭圆任意一点坐标(终点) /// </summary> /// <param name="rx">椭圆半长轴</param> /// <param name="ry">椭圆半短轴</param> /// <param name="Δθ">摆动角度(起始角的摆动角度,也就是起始角+摆动角=结束角)</param> /// <param name="θ1">起始角</param> /// <param name="φ">旋转角</param> /// <param name="currentPoint">起点</param> /// <returns></returns> private static Point GetArcArbitraryPoint(double rx, double ry, double Δθ, double θ1, double φ, Point currentPoint) { //开始点的椭圆任意一点的二维矩阵方程式 var matrixX1Y1 = new Matrix { M11 = currentPoint.X, M21 = currentPoint.Y }; var matrix1 = new Matrix { M11 = Math.Cos(φ), M12 = -Math.Sin(φ), M21 = Math.Sin(φ), M22 = Math.Cos(φ) }; var matrix2 = new Matrix { M11 = rx * Math.Cos(θ1), M21 = ry * Math.Sin(θ1) }; var multiplyMatrix1Matrix2 = Matrix.Multiply(matrix1, matrix2); var matrixCxCy = new Matrix { M11 = matrixX1Y1.M11 - multiplyMatrix1Matrix2.M11, M21 = matrixX1Y1.M21 - multiplyMatrix1Matrix2.M21 }; //终点的椭圆任意一点的二维矩阵方程式 var matrix3 = new Matrix { M11 = rx * Math.Cos(θ1 + Δθ), M21 = ry * Math.Sin(θ1 + Δθ) }; var multiplyMatrix1Matrix3 = Matrix.Multiply(matrix1, matrix3); var matrixX2Y2 = new Matrix { M11 = multiplyMatrix1Matrix3.M11 + matrixCxCy.M11, M21 = multiplyMatrix1Matrix3.M21 + matrixCxCy.M21 }; return new Point(matrixX2Y2.M11, matrixX2Y2.M21); }
效果如下:
可以看到根据算出来的开始角和摆动角,再带入计算出来的弧线(关于计算弧线的算法可以参考我之前的博客)是跟之前的弧线一致的,也间接验证了算法的准确性
求Arc的椭圆圆心
求圆心公式如下:
则代码如下:
/// <summary> /// 获取弧线的椭圆圆心 /// </summary> /// <param name="x1">起点X</param> /// <param name="y1">起点Y</param> /// <param name="x2">终点X</param> /// <param name="y2">终点Y</param> /// <param name="fA">优劣弧:1 优弧 0劣弧</param> /// <param name="fs">顺逆时针绘制:1 顺时针 0 逆时针</param> /// <param name="rx">椭圆半长轴</param> /// <param name="ry">椭圆半短轴</param> /// <param name="φ">旋转角</param> /// <returns></returns> private static Point GetArcCenterPoint(double x1, double y1, double x2, double y2, double fA, double fs, double rx, double ry, double φ) { var matrix1 = new Matrix { M11 = Math.Cos(φ), M12 = Math.Sin(φ), M21 = -Math.Sin(φ), M22 = Math.Cos(φ) }; var matrix2 = new Matrix { M11 = (x1 - x2) / 2, M21 = (y1 - y2) / 2 }; var matrixX1Y1 = Matrix.Multiply(matrix1, matrix2); var x1_ = matrixX1Y1.M11; var y1_ = matrixX1Y1.M21; var a = Math.Pow(rx, 2) * Math.Pow(ry, 2) - Math.Pow(rx, 2) * Math.Pow(y1_, 2) - Math.Pow(ry, 2) * Math.Pow(x1_, 2); var b = Math.Pow(ry, 2) * Math.Pow(y1_, 2) + Math.Pow(ry, 2) * Math.Pow(x1_, 2); double c = 0; if (fA == fs) { c = -Math.Sqrt(a / b); } else { c = Math.Sqrt(a / b); } var matrixCx_Cy_ = new Matrix { M11 = c * (rx * y1_ / ry), M21 = c * (-ry * x1_ / rx) }; var tempMatrix = new Matrix { M11 = Math.Cos(φ), M12 = -Math.Sin(φ), M21 = Math.Sin(φ), M22 = Math.Cos(φ) }; var multiplyMatrix = Matrix.Multiply(tempMatrix, matrixCx_Cy_); var matrixCxCy=new Matrix(){M11 = multiplyMatrix.M11+((x1+x2)/2),M21= multiplyMatrix.M21+((y1+y2)/2) }; return new Point(matrixCxCy.M11, matrixCxCy.M21); }
最终通过上面Svg Arc字符串算出来的椭圆圆心为(-17.42169108128391,-5.368374418803782)
源码
BlogCodeSample/OpenxmlActToSvgSample at main · ZhengDaoWang/BlogCodeSample